

Institutionen för Matematik och Fysik Code: MdH-IMa-2005:015

MASTER THESIS IN MATHEMATICS /APPLIED MATHEMATICS

A Java Applet for pricing Bonds and Bond Options using the

Black-Derman-Toy model

by

Zhang Lei

Magisterarbete i matematik / tillämpad matematik

DEPARTMENT OF MATHEMATICS AND PHYSICS
MÄLARDALEN UNIVERSITY

SE-721 23 VÄSTERÅS, SWEDEN

DEPARTEMENT OF MATHEMATICS AND PHYSICS

Master thesis in mathematics / applied mathematics

Date:
2005-10-26

Projectname:
A Java Applet for Pricing Bonds and Bond Options using the Black-Derman-Toy model

Author:
Zhang Lei

Supervisor:
Jan Röman

Examiner:
Anatoliy Malyarenko

Comprising:
10 points

Abstract

There are seven parts in this thesis report.

Part one: Introduction gives information about background, purpose of study and using
methods.

Part two: The Black-Derman-Toy model gives the detail of the definition, using one
example to show how the theory could be used for backward induction and also another
graphical example to show how to build up the binomial lattice model.

Part three: Brownian-Path Independent Interest models explain the green function and
forward induction method. BDT model could be used only to fit to the yield curve, and
also could fit to both interest rate yield and volatility data.

Part four: Bond and option pricing describes how to calculate the discount factor tree,
Zero-coupon bond, calculate market price from a given spread and calculate spread from
a given market price. In the option pricing part, we gives graphical examples by using
European call and put, American call and put and Bermudan call and put options to show
how BDT model be used for pricing bond options.

Part five: User’s Guide. This is the main part of the whole work. We use earlier
knowledge of Analytical Finance II together with Java in Analytical Finance, in order to
create a Java Applet that Pricing Bonds and bond Options using The Black-Derman-Toy
Model and shows results graphically.

Part six: Conclusion focuses on the purpose of this study.

In the end, three important appendixes, such as fitting yield curves with maximum
smoothness, the Newton-Raphson method in 2 dimensions and the Java Applet code has
been presented.

- 1 -

Acknowledgements

The writing of this thesis gives me an invaluable knowledge how to make a project alive
from the state of idea generation to a concrete paper, and to explore the basic knowledge
of earlier experience. From my very personal point of view, I think the major point with
this study is to understand financial results by using mathematical models. Along with the
theories, an applet is built for Java.

I sincerely thank Jan Röman for his help and advice during the life of the project.

- 2 -

Table of contents

1 Introduction...- 3 -

1.1 Background...- 3 -
1.2 Purpose of Study ...- 3 -
1.3 Method ..- 3 -

2 The Black Derman Toy model..- 4 -
2.1 Definition: ...- 4 -
2.2 Example of using backward induction..- 5 -
2.3 Binomial Lattice model...- 12 -

3 Brownian-Path Independent Interest Models..- 15 -
3.1 The Green function and the forward induction method................................- 16 -
3.2 BDT model fitted to the yield curve only ...- 17 -
3.3 BDT model fitted to interest rate yield and volatility data- 19 -

4 Bond and option pricing..- 22 -
4.1 Calculating the discount factor tree ..- 22 -
4.2 Zero-Coupon bond..- 23 -
4.3 Coupon paying bond...- 24 -
4.4 Spread and market price..- 25 -

4.4.1 Calculate market price from a given spread ...- 26 -
4.4.2 Calculate spread from a given market price ...- 27 -

4.5 Option pricing ...- 28 -
4.5.1 European call option ...- 29 -
4.5.2 European put option..- 29 -
4.5.3 American call option...- 30 -
4.5.4 American put option ...- 31 -
4.5.5 Bermudan call option..- 32 -
4.5.6 Bermudan put option...- 33 -

5 User’s Guide ...- 35 -
6 Conclusion ..- 41 -
7 Appendixes ...- 42 -

7.1 Fitting yield curves with maximum smoothness ..- 42 -
7.2 The Newton-Raphson method in 2 dimensions ..- 45 -
7.3 Java Applet code ...- 48 -

References...- 67 -

- 3 -

1 Introduction

1.1 Background

In 1991 Black and Karasinski generalized the Black-Derman-Toy model. This one-factor
model is one of the most used yield-based models to price bonds and interest-rate
options. The model is arbitrage-free and thus consistent with the observed term structure
of interest rates.

The family of a financial option is a general term denoting the class into which the option
falls, usually defined by the dates on which the option may be exercised. The vast
majority of option contracts are either European or American style options. Under normal
American option, there exists a type of non-standard American option, called Bermudan
option.

Java is a programming language developed by Sun Microsystems. The syntax of Java is
much like that of C/C++, but it is object-oriented and structured around "classes" instead
of functions. Java can also be used for programming applets -- small programs that can be
embedded in Web sites. The language is becoming increasingly popular among both Web
and software developers since it is efficient and easy-to-use.

1.2 Purpose of Study

The purpose of this thesis is to use the Black-Derman-Toy model to value cash flow
instruments, such as: bonds, bond options and callable/put able bonds with OAS. The
input of data and results will be given in a web-based Graphical User Interface (GUI).
The preferred code will be written as a Java applet to be presented at the Internet.

1.3 Method

The descriptions and analysis of theories are based mainly on student literature from
courses Analytical Finance I and Analytical Finance II. Also, there is reliable secondary
information gathered from Internet that has been used. The Java Applet program used to
build the graphical User Interface (GUI) part is based on course Java in Analytical
Finance. Extra study material literature was supplied by the project supervisor.

- 4 -

2 The Black Derman Toy model

2.1 Definition:1

The Black-Derman Toy model is a one factor short-rate model and is one of the most
used yield-based models to price bonds and interest-rate options. It was generalized by
Black and Karasinski and first presented in an article published in the Financial Analyst
Journal in 1990. The model is arbitrage-free and it is developed to match the observed
term structure of yields on zero coupon bonds and their corresponding volatilities. Short
rates are lognormally distributed at all times. Short-rate volatility is potentially time
dependent, and the continuous process of the short-term interest rate is given by:

() () ()
() () ()dztdttr
t
tttrd σ

σ
σθ +

+= lnln

'

 (2.1)

Where σ´(t)/σ(t) is the speed of mean reversion (“gravity”), and θ(t) divided by the speed
of mean reversion is a time-dependent mean-reversion level. The BDT model
incorporates as we see, two independent functions of time, θ(t) and σ(t), chosen so that
the model fits the term structure of spot interest rates and the term structure of spot rate
volatilities. The changes in the short rate are lognormally distributed, with the resulting
advantage that interest rates cannot become negative. Once θ(t) and σ(t) are chosen, the
future short-rate volatility, by definition, is entirely determined. The model has the
advantage that the volatility unit is a percentage, conforming to the market convention.
Unfortunately, due to its lognormality, neither analytic solutions for the prices of bonds
or the prices of bond options are available, nor numerical procedures are required to
derive the short-rate tree that correctly returns the market term structures. Many
practitioners choose to fit the rate structure only, holding the future short-rate volatility
constant. The convergent limit therefore reduces to the following:

() ()dztdttdInr σθ += (2.2)

This version can be seen as a lognormal version of Ho-Lee model.

1 Haug, E., The Complete Guide to option Pricing Formulas. McGraw-Hill

- 5 -

1991, Jamshidian developed a new technique called forward induction. He describes as
“Brownian path independent” and covers the model BDT. Jamshidian shows that the
level of the short rate at time t in the BDT model is given by

() () ()tztetUtr)(σ= (2.3)

where U(t) is the median of the lognormal distribution for r at time t, σ(t) is the level of
short-rate volatility and z(t) is the level of the Brownian motion. If we want to fit the
model to both yield and volatility curves we have to determine both U(t) and σ(t) at each
time step. If we only want to fit just the yield curve, with the set σ(t) equal to a constant,
then we only have to determine the median U(t) and the level of the short rate is then
given by

() () ()tzetUtr σ= (2.4)

2.2 Example of using backward induction

The follow example shows how to calibrate the BDT binomial tree to the current term
structure of zero-coupon yields and zero-coupon volatilities by using backward induction.

Example: we are looking for the value of an American call option on a three-year zero-
coupon bond with time to expiration of 2 years and a strike price of 90. The term
structure of zero-coupon rates and volatilities is shown in the Table 2.1 below. From the
rates and volatilities, we will calibrate the Black-Derman-Toy interest rate tree. To price
the option by using backward induction, we build a tree for the bond prices, as shown
Figure 2.1 below.

Input to Black-Derman-Toy Model
Years to Maturity Zero-Coupon Rates

(%)
Zero-Coupon Volatilities

1 9.0 24.0
2 9.5 22.0
3 10.0 20.0

Table 2.1. Rates and volatilities used for backward induction example.

- 6 -

Figure 2.1. Bond price tree.

In order to build the price tree, we need to build the rate tree below, Figure 2.2:

Figure 2.2. Rate tree.

Now we will find the prices of the zero-coupon bonds with maturity from one year to
three year in the future. By using the zero-coupon rate are shown in the table above and
the face value are 100 (% of the nominal amount). We got:

74.91
09.01

100
=

+

()
40.83

095.01
100

2 =
+

()
13.75

10.01
100

3 =
+

r
ru

rd

ruu

rud

rdd

S
Su

Sd

Suu

Sdd

Sud

100

100

100

100

- 7 -

Then we add this to our data below, Table 2.2

Years to
Maturity

Zero-Coupon Rates
(%)

Zero-Coupon
Volatilities

Zero-Bond
Prices

1 9.0 24.0 91.74
2 9.5 22.0 83.40
3 10.0 20.0 75.13

Table 2.2. Calculated input refer to table 2.1.

Then give us a one-period price tree:

Figure 2.3. One period price tree.

The next step is to build a two-period price tree. As shown in the table 2.2 above, it is
clear that the price today of a two-year zero-coupon bond with maturity two years from
today must be 83.40. To find the second-year bond prices at year one, we need to know
the short rates at step one:

Figure 2.4. Two period price tree and one period rate tree.

Appealing to risk-neutral valuation, the following relationship must hold:

40.83
09.01

1
1005.0

1
1005.0

=
+

+
⋅+

+
⋅

ud rr
 (2.5)

In a standard binomial tree, we have

83.40
Su

Sd

100

100

100

ru

rd
9.0

91.74
100

100

- 8 -

teu ∆= σ (2.6)

ted ∆−= σ (2.7)

t
d
uIne

d
u t ∆=

⇒= ∆ σσ 22 (2.8)

∆
=

d
uIn

t2
1σ (2.9)

+
=

+
=

d
d

u
u

r
S

r
S

1
100

1
100

 (2.10)

Where ∆t in the situation above is one year. Similarly, in the BDT tree, the rates are
assumed to be log-normally distributed. This implies that

22.05.0
2

1
=

⋅=

∆
=

d

u

d

u
n r

r
In

r
r

In
t

σ

We define the volatility factor Zn by:

t
n

neZ ∆= σ2 (2.11)

Now left two equations with two unknowns, there are ru and rd. Since ru = rdZn = rde0.44,
this leads to the following quadratic equation:

40.83
09.01

1
1005.0

1
1005.0 44.0

=
+

⋅+
⋅+

+
⋅

err dd (2.12)

By solving this equation and discarding the negative solution (a rate can not be negative),
we get the following rates at step one:

%87.7=dr , %22.12=ur

- 9 -

Using these solutions, it is now possible to calculate the bond prices that correspond to
these rates. The two-step tree of prices then becomes shown Figure 2.5 :

Figure 2.5. Two period price tree.

The next step is to fill in the two-period rate tree.

Figure 2.6. Two period rate tree.

Last time, there were two unknown rates, and two sources of information:

• Zero-coupon rates.
• The volatility of the zero-coupon rates.

This time, we have three unknown rates, but still only two sources of information. To get
around this problem, remember that the BDT model is built on the following
assumptions:

• Rates are lognormally distributed.
• The volatility is only dependent on time, not on the level of the short rates. There

is thus only level of volatility at the same time step in the rate tree.

Therefore, the step between the rates is given by:

40.020.022
3

3 eeeZ t === ⋅∆σ

9.0%
12.22%

7.87%

ruu

rud

rdd

83.40
89.11

92.70

100

100

100

- 10 -

3Z
r
r

r
r

dd

ud

ud

uu == (2.13)

Now we left only two unknowns. Based on the risk-neutral valuation principle, the
following relationships must hold:

2
31

100
1
100

Zrr
S

uuuu
uu ⋅+

=
+

= (2.14)

31
100

1
100

Zrr
S

ddud
ud ⋅+

=
+

= (2.15)

dd
dd r

S
+

=
1
100

 (2.16)

1222.01
5.05.0

+
⋅+⋅

= uduu
u

SS
S (2.17)

0787.01
5.05.0

+
⋅+⋅

= ddud
d

SS
S (2.18)

09.01
5.05.0

13.75
+

⋅+⋅
= du SS

If the bond only has two years left to maturity, the bond yield or rate of return must
Satisfy:

09.01
0787.01

1
1005.0

1
1005.0

5.0
1222.01

1
1005.0

1
1005.0

5.0
13.75

33
2
3

+
+

+
⋅+

⋅+
⋅

⋅+
+

⋅+
⋅+

⋅+
⋅

⋅
=

dddddddd rZrZrZr

By solving this equation and again discarding any negative answer, we get rdd, then by
multiplying with Z3 we get rud and ruu:

%47.7=ddr , %76.10=udr , %50.15=uur

- 11 -

This gives the following rate tree:

Figure 2.7. Two period rate tree.

With these values for r the equations (2.14 – 2.18) above for the S tree can be solved:

58.86
1
100

=
+

=
uu

uu r
S

29.90

1
100

=
+

=
ud

ud r
S

05.93

1
100

=
+

=
dd

dd r
S

80.78
1222.01

5.05.0
=

+
⋅+⋅

= uduu
u

SS
S

98.84
0787.01

5.05.0
=

+
⋅+⋅

= ddud
d

SS
S

This gives the following three-year price tree:

Figure 2.8. Three period price tree.

9%
12.22%

7.87%

15.50%

10.76%

7.47%

75.13
78.8

84.98

86.58

93.05

90.29

100

100

100

100

- 12 -

The value of the American call option from above is found by standard backward
induction:

+
−+⋅+++⋅

−=
),(1

)1,1(5.0)1,1(5.0,90),(max),(
jmr

jmCjmCjmSjmC (2.19)

Figure 2.9. American call option value tree.

The calculated price is therefore 0.77.

2.3 Binomial Lattice model

Now we will describe the implementation of the model using a binomial lattice. The unit
time is divided into M period of length ∆t = 1/M each. At each period m, corresponding
to time t = n/M = n∆t, there are n+1 states, which the range from j = -m, -m+2,…, m-2,
m. At the present period m = 0, there is a single state j = 0. As shown in the Figure 2.10.

Figure 2.10. Four period binomial lattice.

0
-1

1

-2

0

2

-1

-3

1

3

-2

-4

0

2

4

0.77
0.132

1.55

0

0.296

3.05

- 13 -

Let rm,j denote the annualized one-period rate at period m and state j. Denote the discount
factor at period m and state j by:

 ()
()[] tjmr

jmp ∆+
=

,1
1, (2.20)

Below is one example with the five-step tree of discount factors in Figure 2.11.

Figure 2.11. Five-steps discount factor tree.

As shown in the figure 2.11 is a discrete time representation of the stochastic process for
the short rate.

We can use equation 2.20 to explain the discount factors instead of the one period rate at
each node. The probability for an up or down move in the tree is chosen to be ½. Now we
say that the advantage of the binomial lattice model that is once the one period discount
factors p(m,j) are determined, thus made securities are evaluated easily by backward
induction. So now we let C(m,j) denote the price of a security at period m and state j. This
price will get from its prices at the up and down nodes in the next period by the backward
equation.

())1,1()1,1(),(
2
1),(−++++= jmCjmCjmpjmC (2.21)

P1,-1

p1,1

p2,-2

p2,0

p2,2

p3,-1

p3,-3

p3,1

p3,3

p4,-2

p4,-4

p4,0

p4,2

p4,4

p0,0

- 14 -

Figure 2.12. One period price tree.

If we continue all the way backwards to period m = 0 in equation 2.21.We get the price
today, C(0,0).

C(m,j)
C(m+1,j+1)

C(m+1,j-1)

- 15 -

3 Brownian-Path Independent Interest Models2

This section will talk about the Brownian-Path Independent interest models, and the BDT
model which is included in these.

By definition, an interest rate model is referred to as Brownian Path Independent (BPI) if
there is a function r(z(t), t) such that r(t) = r(z(t), t), where z(t) is the Brownian motion.
At any time t the instantaneous interest rate and therefore the entire yield curve depends
on z(t) but not on the prior history z(s), s < t of the Brownian motion. Two types of BPI
are most interesting:

Normal BPI)()()()(tzttUtr NN σ+= (3.1)

Lognormal BPI)()()()(tzt
L

LetUtr σ= (3.2)

Where σN(t) and σL(t) represent, respectively the absolute and the percentage volatility of
the short rate r(t). UN(t) is the mean and UL(t) the median of r(t).

The advantages with the lognormal BPI are as we have mentioned the positive interest
rates and natural unit of volatility in percentage form, consistent with the way volatility is
quoted in the market place. However, unlike the normal BPI, the lognormal BPI does not
provide a closed form solution. It is possible to fit the yield curve by trial and error but
this is inefficient. In fact, the total computational time needed to calculate the entire
discount factors of a tree with N periods is proportional to N3. If N is a high number, say
at least 100, too many iterations are needed. Forward induction efficiently solves the
yield curve fitting problems, but before describing the procedure a discrete version of the
BPI models is necessary. Consider again the figure 2.10 previously. Define the variable
Xk as

∑
=

=
k

j
jk yX

1

Where yj = 1 if an up move occurs at period k and yj = -1 if a down move occurs at
period k. The variable Xk gives the state of the short rate at period k. At any period k, the
Xk has a binomial distribution with mean zero and variance k. Now, let us investigate the
mean and variance of Xk∆t0.5.

{ } { } 0=∆=∆ kk XEttXE (3.3)

2 Jan Röman, Lecture Notes in Analytical finance II, pp190. 2005

- 16 -

{ } { } 0=∆=∆=∆ tkXtVartXVar kk (3.4)

It follows that Xk∆t0.5 has the same mean and variance as the Brownian motion z(t). Since
the normal distribution is a limit of binomial distributions, and the binomial process Xk
has independent increments, the binomial process Xk∆t0.5 converges to the Brownian
motion z(t) as ∆t approaches zero. The state of the short rate was denoted by j. Replacing
Xk by j will lead to having z(t) approximated as j∆t0.5. Now, replacing t by m (with m =
t/∆t) gives the discrete version of the normal and lognormal BPI families.

Normal BPI: () timmUr NNjm ∆+=)(, σ (3.5)

Lognormal BPI: () tim
Ljm

LemUr ∆=)(
,

σ (3.6)

This lognormal BPI formula 3.6 is to build a tree for the short rate in the applet.

3.1 The Green function and the forward induction method3

Green function is known as Arrow-Debreu prices in discrete-time finance. Arrow-Debreu
prices represent prices of primitive securities. By definition, let G(n,i,m,j) denote the
price at period n and state i of a security that has a cash flow of unity at period m ≥ n and
state j. Note that G(m,j,m,j) = 1 and that G(m,i,m,j) = 0 for i ≠ j. In most cases we
ignore the first two denotations and say that G(m,j) = 1 if we reach the node (m,j) and
zero else. We can compute G(m,j) with the forward induction:

()

() () () ()[]

() ()

() ()

++

−−

−−+++

=+

1,1,
2
1

1,1,
2
1

1,1,1,1,
2
1

,1

jmGjmp

jmGjmp

jmGjmpjmGjmp

jmG

1,

1,

1,

−−=

+=

−≤

mj

mj

mj

 (3.7)

Where p(m,j) is the one-period discount factor:

()
()[] tjmr

jmp ∆+
=

,1
1, (3.8)

3 Jan Röman, Lecture Notes in Analytical finance II, pp193. 2005

- 17 -

The initial condition is given by G(0,0) = 1. Note that an arbitrary short-rate security
expiring at t = m, with a payoff P(m) can be considered as a combination of pure-state
securities.

The equation (3.7) is the binomial forward induction. We can see that the forward
induction function states how we discount a cash flow of unity for receiving it one period
later. This is also can be expressed by use the binomial lattice model. Remember if j =
±m, there is only one node (at the bottom or at the top), which gives a modified
expression for these two cases.

The term structure P(0,m) which represent the price today of a bond that pays unity at
period m, can be obtained for all values of m, by the maximum smoothness criterion (see
appendix 7.1)

Arrow-Debreu prices are the building blocks of all securities. The price of a zero-coupon
bond which matures at period m + 1 can be expressed in terms of the Arrow-Debreu
prices and the discount factors in period m.

() () ()∑=+

j
jmGjmpmP ,,0,0,1,0 (3.9)

In most cases we simply write this equation as

() () ()∑=+

j

jmGjmpmP ,,1 (3.10)

The term structure can be fitted to any Brownian path independent models using forward
induction. First, assume that σ(m) = σ is a given constant. We need to solve U(m) to
match the given discount function p(m,j) where:

()
()[] ttjemU

jmp ∆∆+
=

σ1

1, (3.11)

3.2 BDT model fitted to the yield curve only

As we mentioned before that many practitioners when using the BDT model, they set the
short-rate volatility to be a constant, and it only will fit to the yield curve. Now we let
σ(m) = σ. Let m > 0 and assume that U(m - 1), G(m – 1,j), r(m – 1,j) and p(m – 1,j) have
been found. The values at the initial time m = 0 are U(0) = r(0,0), G(0,0) = 1 and p(0,0)
= 1/[1+r(0,0)]∆t.

- 18 -

Step 1: Generate the Green functions:

 ()

() () () ()[]

() ()

() ()

++

−−

−−+++

=+

1,1,
2
1

1,1,
2
1

1,1,1,1,
2
1

,1

jmGjmp

jmGjmp

jmGjmpjmGjmp

jmG

1,

1,

1,

−−=

+=

−≤

mj

mj

mj

Step 2: Use P(m+1) to solve U(m) by use :

() ()
()[] ttjj emU

jmGmP ∆∆+
=+ ∑

σ1

1,1 (3.12)

Step 3: From U(m) calculate the short rate, and update the discount factors, for all nodes
at time m:

() () tjemUjmr ∆= σ,

()
()[] tjmr

jmp ∆+
=

,1
1,

For the solution in step 2, we use a Newton-Raphson method:

()
()n

m

n
mn

m
n
m xf

xf
xx

'
1 −=+ (3.13)

We can easily do this since we have the derivatives.
Let U(m) = xm be the unknown, then

() () [] ()∑ =+−
+

= ∆∆j
ttj

m

m mP
ex

jmGxf 01
1

1,
σ

 (3.14)

- 19 -

The derivatives are given by

() () []∑ +∆∆

∆

+

∆
=

j
ttj

m

tj

m
ex

tejmGxf 1
1

,'
σ

σ

 (3.15)

3.3 BDT model fitted to interest rate yield and volatility data

Now we will fit to both the yield and volatility curves in BDT model. This requires
solving U(m) and σ(m). Let PU(m) and PD(m) represent the prices at period n = 1 states of
m-maturity zero-coupon bonds.

Note that according to the definition of the volatility an up move of the short rate differs
from a down move by a factor e2σ(m)∆t^0.5. Therefore we have:

()
()

() tm

D

U terme
my
my ∆= σ2 (3.16)

Where y±(m) denote the yield corresponding to PU(m) and PD(m). Solving for
σterm(m)∆t0.5 in equation (3.16) yields,

() () ()

() () 1

1
1

1

1
1

2

−

−
=

∆−−

∆−−
∆

tm
D

tm
Utm

mP

mP
e termσ , 2≥m (3.17)

A second equation for PU(m) and PD(m) is found by discounting back to the origin.

() () ()[] ()jmpmPmPmP DU ,
2
1

+= , 2≥m (3.18)

These two equations can be combined and PU(m) isolation to:

() ()() () ()
()jmp

mPePemP
tm

ttm
U

t
U ,

21
1

21
12 =⋅+−+

∆−−
∆−∆−

−∆− σσ (3.19)

This equation is solved using Newton Raphson, PD(m) is then:

- 20 -

() ()() () tm
ttm

U
t

D ePemP
∆−−

∆−∆−
−∆− ⋅+−=

1
21

121 σσ (3.20)

Forward induction is again used to determine the time-dependent functions that ensure
consistency with the initial yield curve data. However, state prices are now determined
from the nodes U and D requiring the following notation:

GU(m,j): the value, as seen from node U, of a security that pays off $1 if node
 (m, j) is reached and zero otherwise.
GD(m,j): the value, as seen from node D, of a security that pays off $1 if node
 (m, j) is reached and zero otherwise.

By definition GU(1,1) = 1 and GD(1,-1) = 1. The tree is constructed from time ∆t onward
using a procedure similar to the last section. Now we have two equations:

() () ()
() () ()

=+
=+

∑
∑

jmpjmGmP
jmpjmGmP

DD

UU

,,1
,,1

 (3.21)

where j = -m, -m + 2,…, m - 2, m and

()
() ()[] ttjmemU

jmp ∆∆+
=

σ1

1,

The term structure of zero-coupon bonds P(m) and the yield volatility term structure
σterm(m) are known. U(m) and σ(m) are two unknown sets, we can solve them by use a
two-dimensional Newton-Raphson technique. (See appendix 7.2)

The full set of steps to build the tree is therefore the following. Assume m > 0 and that
U(m-1), σ(m-1), GU(m-1,j), GD(m-1,j) and r(m-1,j) are known for all j at time step m – 1.
The values at initial time are U(0,0) = r(0,0), σ(0) = σterm(1), GU(1,1) = 1, GD(1,-1) = 1
and r(m-1,j) giving p(0,0) = 1/[1+r(0,0)]∆t.

Step 1: Derive PU(m) and PD(m) for m = 2 to N.

 () ()() () tm
ttm

U
t

D ePemP
∆−−

∆−∆−
−∆− ⋅+−=

1
21

121 σσ

 PU(m) is found as the solution to

- 21 -

 () ()() () ()
()jmp

mPePemP
tm

ttm
U

t
U ,

21
1

21
12 =⋅+−+

∆−−
∆−∆−

−∆− σσ

Step 2: Generate GU(m,j), GD(m,j):

() () () () ()[]

() () () () ()[]

+−+−+−−−−=

+−+−+−−−−=

1,11,11,11,1
2
1,

1,11,11,11,1
2
1,

jmGjmpjmGjmpjmG

jmGjmpjmGjmpjmG

DDD

UUU
 (3.22)

Step 3: Using the derived discount functions PU(m+1) and PD(m+1), solve U(m) and
σ(m) from

() () ()
() () ()

=+
=+

∑
∑

jmpjmGmP
jmpjmGmP

DD

UU

,,1
,,1

Where j = -m, -m + 2,…, m - 2, m and

()
() ()[] ttjmemU

jmp ∆∆+
=

σ1

1,

Step 4: From the calculated values of U(m) and σ(m) calculate the short rate, and one
period discount factors for all nodes j at time m:

() () () tjmemUjmr ∆= σ,

()
[()] tjmr

jmp
∆+

=
,1

1,

The method of forward induction requires only n arithmetic operations to construct the
discount factors at period n. The iterations are made only on the nodes at the given
period, not the whole way back to the root of the tree as in "trial and error". In a tree with
N periods, the computational time is proportional to the number of nodes N2, which is of
the same order as when closed formed solutions for the discount factors are available.

- 22 -

4 Bond and option pricing

This chapter will discuss and describe how to price bonds and options on those bonds
using the BDT forward induction model. All calculations are done by the Java applet
produced together with this thesis which uses the theory from chapter 2 and 3.

4.1 Calculating the discount factor tree

The first thing needed in pricing bonds and options is the rate and discount factor trees.
Table 4.1 below gives the assumed market term structure.

Maturity:
m(years)

Zero-Coupon Bond: P(0,m)
(paying $1 in m years)

Yields: y (m)
(%)

Yield Volatility:
σterm(m) (%)

1 0.9524 5 21
2 0.8900 6 20
3 0.8163 7 19
4 0.7350 8 18
5 0.6499 9 17

Table 4.1. Rates and volatilities used for bond and option examples.

These values are inserted in the Java applet which calculates the rate tree shown in Figure
4.1 and the discount factor tree as shown in Figure 4.2.

 0.0699
 0.0653
 0.0611 0.0947
 0.0564 0.0912
0.05 0.088 0.1282
 0.0841 0.1273
 0.1269 0.1737
 0.1777
 0.2352

Figure 4.1. Rate tree.

- 23 -

 0.9347
 0.9387
 0.9424 0.9135
 0.9466 0.9164
0.9524 0.9191 0.8863
 0.9224 0.8871
 0.8874 0.852
 0.8491
 0.8096

Figure 4.2. Discount factor tree.

4.2 Zero-Coupon bond

Once the discount factor tree has been calculated it can be used to calculate the bond
price tree for zero-coupon bond. The price at maturity is known to be unity (100%). The
discount factors from Figure 4.2 are then used to calculate the bond prices before that
date using the equation for the bond price tree below.

() () () ()[]1,11,1,
2
1, −++++⋅= jmPjmPjmpjmP (4.1)

 P(m+1,j+1)
P(m,j)
 P(m+1,j-1)

- 24 -

This gives the zero-coupon bond price tree as follows:

 100.0
 93.4651
 86.7437 100.0
 79.739 91.3504
 72.4501 82.4736 100.0
64.9931 73.3342 88.6347
 64.0355 77.1049 100.0
 65.5135 85.2043
 70.5452 100.0
 80.9609
 100.0

Figure 4.3. Zero-Coupon bond price tree.

The single value at the beginning of the tree, 64.9931, is called the Bullet bond price and
represents the price of a bond without any embedded options or spread.

4.3 Coupon paying bond

The price tree for a coupon paying bond is the same as for the zero-coupon bond except
that a cash flow, C, is added according to the coupon frequency, f, and coupon rate, R.

f
RC = (4.2)

The price at maturity is known to be unity. Assuming the time step between nodes in the
tree is 1/f the value of the cash flow is added at every node. The same discount factor
tree, Figure 4.2, as before is then used to calculate the bond prices back to present time.
Bond price tree:

() () () ()[] CjmPjmPjmpjmP +−++++⋅= 1,11,1,
2
1, (4.3)

With a coupon frequency of one year and a coupon rate of 5% the coupon bond price tree
becomes as follows:

- 25 -

 105.0
 103.1384
 100.7745 105.0
 97.8091 100.918
 94.2412 96.1796 105.0
85.2113 90.7405 98.0664
 84.7026 90.3956 105.0
 82.078 94.4645
 83.3179 105.0
 90.0089
 105.0

Figure 4.4. 5% coupon paying bond price tree.

The Bullet bond price of the five year coupon bond with 5% coupon rate is 85.2113 as
can be seen in Figure 4.4. With paying coupon bonds it is no longer always best to
exercise as early as possible with American put options as it was with the zero-coupon
bonds. The coupon rate makes the price of the bond higher the higher the rate is as more
money is paid out.

4.4 Spread and market price

The actual market prices of bonds or options are often if not always different than the
values calculated previously by the theoretical equations. This difference between the
Market bond price and the theoretical Bond price is called the spread and it affects the
market price such that the higher the spread is the lower the market price is. The spread is
measured in basis points which are the same as one-hundredth of a percent, 0.01%. The
reasons for it are many but the most important ones are credit risk and liquidity.

Credit ratings for companies can be seen as an example for credit risk. The companies
that the market considers most stabile (lowest risk) are given the rate AAA, those that are
a considered little bit less stabile are given AA and so on until the rate D that are for
companies that have defaulted on financial obligations. The rates given the different
companies directly affect the spread put on bonds they would issue; an AAA company
would have a low spread added and a D company would have a very high spread added if
there was actually anybody interested in buying it.

- 26 -

Liquidity represents how easy it is to trade the asset. If there is a readily available market
for it the added spread would be low but if there is no designated market for it and it
would be difficult to find another buyer the added spread would be high.

4.4.1 Calculate market price from a given spread

If there is a given spread the market price associated with this spread can be calculated.
The way to do this is to add the spread to every rate node in the rate tree. For example if a
spread of 100 basis points is added to the rate tree in Figure 4.1 the result is the following
rate tree. The coupon rate is set to zero.

 0.0799
 0.0753
 0.0711 0.1047
 0.0664 0.1012
0.06 0.098 0.1382
 0.0941 0.1373
 0.1369 0.1837
 0.1877
 0.2452

Figure 4.5. Rate tree using a spread of 100 basis points.

It is plain to see that the value 0.01 has been added to every rate in the tree compared to
the old rate tree. This new rate tree including the spread gives the following discount
factor tree in Figure 4.6 which of course differs from its old one too, Figure 4.2.

 0.926
 0.93
 0.9336 0.9052
 0.9377 0.9081
0.9434 0.9107 0.8786
 0.914 0.8793
 0.8796 0.8448
 0.8419
 0.8031

Figure 4.6. Discount factor tree using a spread of 100 basis points.

- 27 -

This new discount rate tree is then used to calculate the new coupon price tree, including
5% coupon rate and 100 basis points spread, as seen in Figure 4.7.

 105.0
 102.2296
 99.0575 105.0
 95.3971 100.0497
 91.2591 94.586 105.0
81.788 88.577 97.2487
 82.1315 88.9529 105.0
 80.2092 93.7086
 82.0529 105.0
 89.3262
 105.0

Figure 4.7. Bond price tree using a spread of 100 basis points and 5 % coupon rate.

The price of the five year bond with spread and the coupon rate is 81.788 as can be seen
in Figure 4.7. As with the rate and discount factor trees the coupon price tree is also
affected by the spread. By comparison with Figure 4.4 it is easy to see that an increase in
the spread led to a lower price.

4.4.2 Calculate spread from a given market price

Just like the Market bond price can be calculated if the spread is known, the spread can
be calculated if the market price of the bond is known. The way to do this is to guess an
initial spread, calculate the market price for this spread and if it is wrong try a new
spread. Instead of just testing different spreads at random a much better way is to use a
numerical method like Newton-Raphson and iterate until a close enough value for the
spread is found. Since it isn’t possible to take the derivative of the whole market price
procedure a simpler version of Newton-Rapson is used. This version uses a numerical
approximation of the derivative instead of the analytical derivative.

Instead of:

()
()n

n
nn xf

xf
xx

'1 −=+ (4.4)

- 28 -

The following equation is used.

()
() ()nn

n
nn xfhxf

hxf
xx

−+
⋅

−=+1 (4.5)

Previously the market price 81.788 was calculated using a spread of 100 basis points. If
the market price is instead set to 82 and the spread is calculated as said above the spread
becomes 93.6522.

4.5 Option pricing

The bond price trees and discount factor trees that were calculated before in chapters 4.1
to 4.4 can be used to calculate the values of options on the respective bonds. The
calculations for the option values are done the same way no matter if there is or isn’t a
coupon rate or spread. The only thing is that the discount factor trees and bond price trees
including those coupon rates or spreads have got to be used. This means that the same
spread will be added for the option as for the bond.

An option can be embedded or not. A bond with an embedded option means that either
the issuer or holders of the bond have the right to take some action, for example a bond
with an embedded call option gives the issuer the right to buy the bond back for the strike
price. An embedded option affects the price of the bond. An embedded call option lowers
the price of the bond with the value of the option. An embedded put option on the other
hand raises the price of the bond with the value of the option.

There are three names used to describe the prices of bonds; Market bond price, Bond
price and Bullet bond price. The Market price is the price the bond is traded for and
includes spread and values of embedded options. The Bond price does not include the
spread but includes embedded options and shows what the theoretical price is. The bullet
bond price is the price without either spread or embedded options and shows what the
value is if no option is exercised.

Six types of options will be presented: European call, European put, American call,
American put, Bermudan call and Bermudan put. For simplicity we set the same strike
price as K = 97 (the Bermuda option has more and other strike prices) and maturity T = 4
years for all six options.

- 29 -

4.5.1 European call option

A European call option gives the holder the right to buy the underlying asset for the strike
price at the time of maturity. If the strike price is higher than the value of the bond the
holder will not exercise. If on the other hand, the strike price is lower than the value of
the bond the holder will exercise the option and earn the differences between them.

() (){ }0,,max, KjmSjmCE −= , for m = T. (4.6)

This value is then discounted back to present time using the discount factor tree:

() () () ()[]1,11,1,
2
1, −++++⋅= jmCEjmCEjmpjmCE , for m < T. (4.7)

This gives the option value tree:

 5.2296
 3.8498
 2.4963 3.0497
 1.5135 1.4977
0.882 0.7318 0.2487
 0.3564 0.1094
 0.0481 0.0
 0.0
 0.0

Figure 4.8. European call option value tree.

The value of the European call option with strike price 97 on the five-year coupon bond
with 5% coupon rate and 100 basis points spread is thus 0.882.

4.5.2 European put option

A European put option gives the holder the right to sell the underlying asset for the strike
price at the time of maturity. If the strike price is higher than the value of the bond the
holder will exercise the option and earn the differences between them. If on the other
hand, the strike price is lower than the value of the bond the holder will not exercise.

- 30 -

() (){ }0,,max, jmSKjmPE −= , for m = T. (4.8)

This value is then discounted back to present time using the discount factor tree:

() () () ()[]1,11,1,
2
1, −++++⋅= jmPEjmPEjmpjmPE , for m < T. (4.9)

This gives the option value tree:

 0.0
 0.0
 0.0 0.0
 0.3089 0.0
0.8626 0.6589 0.0
 1.5197 1.447
 2.6666 3.2914
 4.616
 7.6738

Figure 4.9. European put option value tree.

The price of the European put option with strike price 97 on the five-year coupon bond
with 5% coupon rate and 100 basis points spread is thus 0.8626.

4.5.3 American call option

An American call option gives the holder the right to buy the underlying asset for the
strike price at any time up to maturity. At the time of maturity the holder has the same
right to exercise as with a European call option. If the strike price is higher than the value
of the bond the holder will not exercise. If on the other hand, the strike price is lower than
the value of the bond the holder will exercise the option and earn the differences between
them.

() (){ }0,,max, KjmSjmCA −= , for m = T. (4.10)

The American option is however different from the European at the time before the
maturity. There is a choice between discounting back the value from a later time point
and exercising at this time point.

- 31 -

() () () () ()[]

 −++++⋅−= 1,11,1,

2
1,,max, jmCAjmCAjmpKjmSjmCA , for m < T.

 (4.11)

This gives the option value tree:

 5.2296
 3.8498
 2.4963 3.0497
 1.5135 1.4977
0.882 0.7318 0.2487
 0.3564 0.1094
 0.0481 0.0
 0.0
 0.0

Figure 4.10. American call option value tree.

The price of the American call option with strike price 97 on the five-year coupon bond
with 5% coupon rate and 100 basis points spread is thus 0.882.
This tree is the same as the value tree for the European call because both will be
exercised in the last year.

4.5.4 American put option

An American put option gives the holder the right to sell the underlying asset for the
strike price at any time up to maturity. At the time of maturity the holder has the same
right to exercise as with a European put option. If the strike price is lower than the value
of the bond the holder will not exercise. If on the other hand, the strike price is higher
than the value of the bond the holder will exercise the option and earn the differences
between them.

() (){ }0,,max, jmSKjmPA −= , for m = T. (4.12)

The American option is however different from the European at the time before the
maturity. There is a choice between discounting back the value from a later time point
and exercising at this time point.

- 32 -

() () () ()[]

 −++++⋅−= 1,11,1,

2
1),,(max, jmPAjmPAjmpjmSKjmPA , for m < T.

 (4.13)

This gives the option value tree:

 0.0
 0.0
 1.6029 0.0
 5.7409 2.414
9.7214 8.423 0.0
 14.8685 8.0471
 16.7908 3.2914
 14.9471
 7.6738

Figure 4.11. American put option value tree.

The price of the American put option with strike price 97 on the five-year coupon bond
with 5% coupon rate and 100 basis points spread is thus 9.7214. As can be seen in the
tree above the value increases from the fourth year to third, this is because the price of a
bond is usually lower the longer it has to maturity. It is in fact always best to exercise an
American put option on a non coupon paying bond as early as possible. If it is a coupon
paying bond it is not always that an early exercise is best.

4.5.5 Bermudan call option

A Bermudan option is a type of non-standard American option. This type of call option
gives the holder the right to buy the underlying asset at a set (always discretely spaced)
number of times up to maturity. The strike price is specified for each time and may
change during the life of the option. At the time of maturity the holder has the same right
to exercise as with a European call option. If the strike price is higher than the value of
the bond the holder will not exercise. If on the other hand, the strike price is lower than
the value of the bond the holder will exercise the option and earn the differences between
them.

{ }0),(),(max),(mKjmSjmCB −= , for m = T. (4.14)

- 33 -

The Bermudan option is different from the standard American in that it can have different
strike prices. Same as the American there is a choice between discounting back the value
from a later time point and exercising at this time point using this time point’s strike
price.

()[]

 −++++⋅−=)1,1()1,1(.,

2
1),().(max).(jmCBjmCBjmpmKjmSjmCB ,

for m < T. (4.15)

The strike prices in this example are from earliest exercise time to maturity: 82, 87, 92,
97. This gives the following option value tree:

 5.2296
 7.0575
 8.3971 3.0497
 9.2591 2.586
4.7178 1.577 0.2487
 0.7426 0.1094
 0.0481 0.0
 0.0
 0.0

Figure 4.12. Bermudan call option value tree.

The price of the Bermudan call option with strike prices 82, 87, 92, 97 on the five-year
coupon bond with 5% coupon rate and 100 basis points spread is thus 4.7178.

4.5.6 Bermudan put option

A Bermudan option is a type of non-standard American option. This type of put option
gives the holder the right to sell the underlying asset at a set (always discretely spaced)
number of times up to maturity. The strike price is specified for each time and may
change during the life of the option. At the time of maturity the holder has the same right
to exercise as with a European put option. If the strike price is lower than the value of the
bond the holder will not exercise. If on the other hand, the strike price is higher than the
value of the bond the holder will exercise the option and earn the differences between
them.

- 34 -

.

{ }0),.()(max).(jmSmKjmPB −= , for m = T. (4.16)

The Bermudan option is different from the standard American in that it can have different
strike prices. Same as the American there is a choice between discounting back the value
from a later time point and exercising at this time point using this time point’s strike
price.

()[]

 −++++⋅−=)1,1()1,1(.,

2
1),.()(max).(jmPBjmPBjmpjmSmKjmPB ,

for m < T. (4.17)

The strike prices in this example are from earliest exercise time to maturity: 82, 87, 92,
97. This gives the following option value tree:

 0.0
 0.0
 0.0 0.0
 0.6506 0.0
2.0698 1.3875 0.0
 3.7373 3.0471
 6.7908 3.2914
 9.9471
 7.6738

Figure 4.13. Bermudan put option value tree.

The price of the Bermudan put option with strike prices 82, 87, 92, 97 on the five-year
coupon bond with 5% coupon rate and 100 basis points spread is thus 2.0698.

- 35 -

5 User’s Guide

The Java applet that was developed for this thesis can calculate bond prices using inputs
like annual short rates, short rate volatilities, coupon rate, strike prices, spread and
embedded options. An example where all of these features are included can be seen
below in Figure 5.1.

Figure 5.1. Java applet screen shot.

The applet is divided into three panels. The lower left panel is for input values. The lower
right panel is for input and calculation buttons. The top panel is for results.

The different fields in the input values panel to the lower left are described below:

- 36 -

Option Adjusted Spread input:
This is where the given spread is entered if a market price is wanted. If the spread is set to
0 no spread will be added.

Market price input:
This is where the given Market bond price is given if a spread is wanted.

Step size in months:
Here the time interval between the nodes in the binomial trees is given. This value also
determines the Coupon rate frequency as the frequency equals 1/Step size.

Coupon rate:
This is where the bond’s Coupon rate is given.

Steps to expiration of option:
Here the number of steps to the expiration of the option is given. This value should be
lower than the steps to maturity of the bond. The value chosen here determines what
strike price field or fields are enabled to enter values into.

Steps to maturity:
Here the number of steps to maturity of the bond is given. The value chosen here
determines what rate and volatility fields are enabled to enter values into

Annual Z-C rates:
This is where the short rates are entered; the rate should be given in annual form. One
short rate for each step has to be entered. The rates should be growing for every step as it
is natural that a better interest per year is given if money is locked away for more years.

Rate volatilities:
This is where the volatilities corresponding to the short rates are given. One volatility for
each step has to be entered.

Strike prices:
Here is where the strike price or prices are entered. If a European option is chosen the
strike price for the step set to option expiration has to be given. If an American/Bermudan
option is chosen the strike price for all the steps up to the step set to expiration has to be
given.

The different buttons in lower right panel are described below:

Calculate market price:

- 37 -

This button is chosen if the market price given a certain spread is wanted.

Calculate spread:
This button is chosen if the spread given a certain market price is wanted.

No embedded option:
This button is chosen if no option is wanted on the bond.

European Call:
This button is chosen if a European call option is wanted on the bond.

European Put:
This button is chosen if a European put option is wanted on the bond.

American/Bermudan Call:
This button is chosen if an American or a Bermudan call option is wanted on the bond.

American/Bermudan Put:
This button is chosen if an American or a Bermudan put option is wanted on the bond.

Show rate tree:
Pressing this button brings up another separate window that shows the rate tree including
the spread used in the calculations.

Figure 5.2. Windows displayed when pressing Show rate tree.

Show discount factor tree:
Pressing this button brings up another separate window that shows the discount factor
tree including the spread used in the calculations.

- 38 -

Figure 5.3. Windows displayed when pressing Show discount factor tree.

Show coupon price tree:
Pressing this button brings up another separate window that shows the coupon price tree
including the spread used in the calculations.

Figure 5.4. Windows displayed when pressing Show coupon price tree.

Show option value tree:
If the ‘No embedded option’ is not chosen pressing this button brings up another separate
window that shows the option value tree including the spread used in the calculations.

- 39 -

Figure 5.5. Windows displayed when pressing Show option value tree.

Calculate:
Pressing this button and all the calculations are done.

Reset to defaults:
Pressing this button set all inputs back to default values.

The different fields in the top panel are described below:

Option Adjusted Spread:
This field shows the spread given or the spread calculated depending on which button
was chosen.

Market bond price:
This field shows the market price given or the market price calculated depending on
which button was chosen.

Bond price:
This field shows the price of the bond including any option but without spread.

Bullet bond price:
This field shows the price of the bond without any spread or option.

Option value, with spread:
This field shows the value of the chosen option calculated with the spread.

- 40 -

Option value, without spread:
This field shows the value of the chosen option calculated without the spread.

- 41 -

6 Conclusion

The BDT model is a one-factor model that is one of the most used yield-based models to
price bonds and interest-rate options. The model is arbitrage-free and thus consistent with
the observed term structure of interest rates. The theory behind the BDT model was read,
understood and then explained in the first part of the thesis.

Together with the theory a Java applet was constructed to illustrate the BDT model and to
calculate bond prices using that model. The Java applet calculates the BDT model
according to the forward induction method and calibrates it to both yield and volatility
data. Using the BDT model the applet can calculate the market price of a bond that
includes any of the following; coupon rate, embedded option and spread. If the market
price and bond structure is known the applet can even calculate the spread applied to the
bond. The embedded options the applet can handle are the most common ones which are;
European, American and Bermudan. The options can be chosen as putable or callable.
The results are displayed graphically and separate windows can be brought up to check
the binomial trees used in the calculations.

As we know the BDT model is widely used to price bonds and interest rate options. So
we believe our results are correct but the real-time market might have different values. In
the future we would like to compare the applet results to actual market data.

- 42 -

7 Appendixes

7.1 Fitting yield curves with maximum smoothness4

Single-factor term structure models such as Hull and White can be used to fit yield curves
and forward rate curves with maximum smoothness. Such a method will generally match
the observable yield curve data very well but between observable data points, yield curve
smoothing technique is necessary. Kenneth J. Adams and Donald R. Van Deventer
provide an approach to yield curve fitting by introducing the "maximum smoothness
criterion".

The objective is to fit observable points on the yield curve with the function of time that
produces the smoothest possible forward rate curve. To do this, a technique from
numerical analyses is used. The smoothest possible forward rate curve on an interval
(0, T), is defined as one that minimizes the functional

()[]∫=
T

dssfZ
0

2,0''

Subject to

() ()tPdssf
it

,0,0exp
0

=

− ∫ i = 1, 2,…,m

Where P(0,ti) represent the observed prices of zero coupon bonds with maturities ti.
Expressing the forward rate curve as a fiction of a specified form with a finite number of
parameters may approach this problem. The maximum smoothness term structure can
then be found within this parametric family, that is, it will be more smooth than that
given by any other mathematical expression of the same degree and same functional
form.

However, it would be more useful to determine the maximum smoothness term structure
within all possible functional forms. This is possible due to the theorem provided by
Oldrich Vasicek and stated in an article by Adams and Van Deventer in The Joumal of
fixed income, pp. 53-62. June 1994.

4 Jan Röman, Lecture Notes in Analytical Finance II, pp202. 2005

- 43 -

Theorem:
The term structure f(0, t), Tt ≤≤0 of forward rates that satisfies the equations above is a
fourth order spine with the cubic term absent given by

() iii atbtctf ++= 4,0 ii ttt <≤−1 i = 1, 2, …, m+1

Where the maturities satisfy 0 = t0 < t1 <...< tm+1 < T. The coefficients ai, bi, ci, satisfy the
equations

11
4

1
4

+++ ++=++ iiiiiiiiii atbtcatbtc

1
3

1
3 44 ++ +=+ iiiiii btcbtc

01 =+mc

() () () ()
()

−=−+−+−
−

−−−
1

1
2

1
25

1
5

,0
,0

2
1

5
1

i

i
iiiiiiiii tP

tP
Inttattbttc

For a proof of this theorem, we refer to the article written by Kenneth J. Adams and
Donald R. Van Deventer. It is seen that the theorem specifies 3m + 1 equations for the
3m + 3 unknown parameters ai, bi, ci, i=1,2,…, m+1. The maximum smoothness solution
is unique and can be obtained analytically as follows

The objective function is proportional to

()∑
=

−−=
m

i
iii ttcZ

1

5
1

52

According to the term structure f(t) stated by Oldrich Vasicek's theorem. This function is
quadratic in the parameters while the four conditions above are all linear in the
parameters. We have an unconstrained quadratic problem of the form:

min x T Dx

Subject to

Ax = b

With the solution ()() 01

=−
− DxAAAAI TT

Any two of these equations provide the remaining conditions on the parameters ai, bi, ci.
Two additional requirements may be stated:

- 44 -

1. f ’(T) = 0 for the asymptotic behaviour of the term structure.
2. a0 = r which means that the instantaneous forward rate at time zero is equal to an
observable rate r.

If both of the additional requirements are used, no equation from the equation above is
needed.

- 45 -

7.2 The Newton-Raphson method in 2 dimensions

The Newton-Raphson method is a well-known numerical method to solve roots to
equations from numerical analysis. The iteration scheme can be derived from a
MacLaurin expansion of a given function f(x):

() () () () ...''
!2

'
2

+++=+ xfhxhfxfhxf

To the lowest order we have f(x+h) = f(x) + hf´(x) where x+h is the root we are trying to
calculate. Let the root be xn+1 we can write an iteration scheme as:

() () () ()nnnnn xfxxxfxf '0 11 −+== ++

This gives the well-known formula for Newton-Raphson in one dimension:

()
()n

n
nn xf

xf
xx

'1 −=+

If we have to solve two equations simultaneous:

()
()

=
=

0,
0,

yxg
yxf

We can write Newton-Raphson with vector notation:

()
()n

n
nn xf

xf
xx

'1 −=+

Where xn = (xn,yn) and

 () ()
()

=

bn

nn
n yxg

yxf
xf

,
,

The derivative is called the Jacobian and is defined as:

- 46 -

() ()

() ()

() ()

∂
∂

∂
∂

∂
∂

∂
∂

==

n

nn

n

nn

n

nn

n

nb

nn

y
yxg

x
yxg

y
yxf

x
yxf

XfXJ .,

,,

'

Since we can no divide by the Jacobian, we have to multiply with the inverse Jacobian.
Therefore, we remember how to invert a 2 x 2 matrix from the linear algebra:

()

−

−
=⇒

= −

ac
bd

J
J

dc
ba

J
det

11

 , () bcadJ −=det

We then have the following system of equation to solve:

() ()

() ()
()
()

∂
∂

∂
∂

−

∂
∂

−
∂

∂

−

=

+

+

nn

nn

n

nn

n

nn

n

nn

n

nb

n

n

n

n

yxg
yxf

x
yxf

x
yxg

y
yxf

y
yxg

Dy
x

y
x

,
,

.,

,,
1

1

1

Where

() ()

() ()
() () () ()

n

nn

n

nn

n

nn

n

nn

n

nn

n

nb

n

n

n

nn

x
yxg

y
yxf

y
yxg

x
yxf

y
yxg

x
yxg

y
yxf

x
yxf

D
∂

∂
∂

∂
−

∂
∂

∂
∂

=

∂
∂

∂
∂

∂

∂

∂
∂

=
,,,,

,,

,,

Use Newton-Raphson to solve U(m) and σ(m) from the BDT model

() () ()
() () ()

=+
=+

∑
∑

jmpjmGmP
jmpjmGmP

DD

UU

,,1
,,1

Where j = -m, -m+2,…, m-2, m and

()
() ()[] ttjmemU

jmp ∆∆+
=

σ1

1,

I.e., we have two equations

- 47 -

() ()
() ()

=−=
=−=

∑
∑

0,,
0,,

DD

UU

PUpGUg
PUpGUf

σσ
σσ

With

() ()

() ()

() ()

() ()

∂
∂

=

∂
∂

=

∂
∂

=

∂
∂

=

∑

∑

∑

∑

σ
σσ

σσ
σ
σσ

σσ

σ

σ

,,'

,,'

,,'

,,'

UpGUg
U

UpGUg

UpGUf
U

UpGUf

D

DU

U

UU

() ()
[]

()∑ =+−
+

=
∆∆

j
ttj

m
m mP

ex
jmGxf 01

1
1,
σ

The derivatives are given by

() ()

() ()[] 1
1

,
+∆∆

∆

+

∆
−=

∂
∂

ttjm

tjm

emU

te
U

Up
σ

σσ

And

() () ()

() ()[] 1
1

,
+∆∆

∆

+

∆∆
−=

∂
∂

ttjm

tjm

emU

ettjmUUp
σ

σ

σ
σ

.
Similar expressions yields for the derivates of PD(U,σ). Therefore, we have the Jacobian
and can use Newton-Raphson to build the tree.

- 48 -

7.3 Java Applet code
//--
// Name: BDT_bond_pricing.java
// Authors: Lei Zhang
// Date: 05-10-01
//
//--

import java.awt.*;
import java.awt.event.*;
import java.awt.color.*;
import javax.swing.*;
import javax.swing.table.*;
import java.math.*;
import java.util.*;
import java.lang.*;

public class BDT_bond_pricing extends JApplet implements ActionListener {

 //- Variables
 //- Content pane
 private Container contentPane = null;

 //- Panels
 private JPanel headerPanel = null;
 private JPanel resultPanel = null; // maybe use later...
 private JPanel inputPanel = null;
 private JPanel dataPanel = null;
 private JPanel fixeddataPanel = null;
 private JPanel dynamicdataPanel = null;
 private JPanel controlPanel = null;
 private JPanel commandPanel = null;
 private JPanel tablePanel = null;
 private JPanel tablePanel0 = null;
 private JPanel tablePanel1 = null;
 private JPanel tablePanel2 = null;
 private JPanel tablePanel3 = null;
 private JPanel callPutPanel = null;
 private JPanel spreadPanel = null;
 private JPanel calculatePanel = null;
 private JPanel showTreePanel = null;
 private JPanel resetPanel = null;
 private JPanel couponPricePanel = null;
 private JPanel optionPricePanel = null;

 //- Strings
 private final String HEADER =
 "PRICING BONDS AND BOND OPTIONS USING THE BDT MODEL";
 private final String COUPONPRICE = " Market bond price:";
 private final String OPTIONPRICE = " Option value, with spread:";
 private final String SPREADOUT = " Option Adjusted Spread:";
 private final String OPTIONPRICESIMPLE = " Option value, without spread:";
 private final String BULLETPRICE = " Bullet bond price:";
 private final String BONDPRICE = " Bond price:";
 private final String STEP = " Step size in months:";
 private final String STRIKE = " Strike prices:";
 private final String EMPTY = " ";
 private final String NUM_EXP = " Steps to expiration of option:";
 private final String COUPONRATE = " Coupon rate, set to 0 for zero-coupon:";
 private final String NUM_STEPS = " Steps to maturity of underlying asset:";
 private final String STEPS_TO_MAT = " Steps to maturity";
 private final String Z_C_RATE = " Annual Z-C rates:";
 private final String Z_C_VOLATILITY = " Rate volatilities:";

- 49 -

 private final String NO_OPTION = " No embedded option";
 private final String CALL = " European Call";
 private final String PUT = " European Put";
 private final String ACALL = " American/Bermudan Call";
 private final String APUT = " American/Bermudan Put";
 private final String CALCULATE = " Calculate ";
 private final String SHOWRATE = " Show rate tree ";
 private final String SHOWDISCOUNT = " Show discount factor tree ";
 private final String SHOWCOUPON = " Show coupon price tree ";
 private final String SHOWOPTION = " Show option value tree ";
 private final String RESET = " Reset to defaults ";
 private final String RATE_TREE = " Short rate tree:";
 private final String DISCOUNT_TREE = " Discount factor tree:";
 private final String BOND_PRICE_TREE = " Coupon bond price tree:";
 private final String OPT_PRICE_TREE = " Option value tree:";
 private final String NOT_A_NUMBER = " Enter a number";
 private final String NON_POSITIVE = " Enter a positive number";
 private final String EXP_MAT_ERROR =
 " Expiration must be lower than maturity";
 private final String BAD_RATES = " Rates should not go down for more years";
 private final String CALC_SPREAD = " Calculate spread";
 private final String CALC_MARKETP = " Calculate market price";
 private final String SPREADIN = " Option Adjusted Spread input:";
 private final String MARKETPIN = " Market price input:";

 //- Tool tips
 private final String SPREADOUT_TIP = "Spread, in basis points (0.01 %)";
 private final String MARKETPOUT_TIP =
 "Market price, including possible embedded option";
 private final String BONDPRICE_TIP =
 "Value of the bond including embedded option but not spread";
 private final String BULLETPRICE_TIP =
 "Value of the bond without embedded options or spread";
 private final String OPTIONPRICE_TIP = "Value of embedded option";
 private final String OPTIONPRICESIMPLE_TIP =
 "Value of option, without spread";
 private final String SPREADIN_TIP =
 "Observed spread, in basis points (0.01 %)";
 private final String MARKETPIN_TIP = "Observed market price";
 private final String STEP_TIP =
 "Size of steps for measuring time to maturity and expiration, (=1/coupon frequency)";
 private final String STRIKE_TIP =
 "Strike price for the option, is disabled if 'No option' is selected";
 private final String NUMEXP_TIP =
 "Time to expiration of option, counted in steps";
 private final String COUPONRATE_TIP =
 "Rate that decides the cash flow from the coupon, in %";
 private final String NUMSTEPS_TIP =
 "Time to maturity of bond, counted in steps";
 private final String Z_C_RATE_TIP = "Risk-free annual interest rate, in %";
 private final String Z_C_VOLATILITY_TIP =
 "Volatility of the interest rates, in %";

 //- Labels
 private JLabel headerLabel = null;
 private JLabel stepLabel = null;
 private JLabel couponRateLabel = null;
 private JLabel numStepsLabel = null;
 private JLabel numExpLabel = null;
 private JLabel stepsToMatLabel = null;
 private JLabel zcVolatilityLabel = null;
 private JLabel zcRateLabel = null;
 private JLabel couponPriceLabel = null;
 private JLabel optionPriceLabel = null;

- 50 -

 private JLabel spreadInLabel = null;
 private JLabel spreadOutLabel = null;
 private JLabel marketpInLabel = null;
 private JLabel bulletLabel = null;
 private JLabel bondLabel = null;
 private JLabel optionSimpleLabel = null;

 //- Text fields
 private JTextField couponPriceField = null;
 private JTextField optionPriceField = null;
 private JTextField stepField = null;
 private JTextField couponRateField = null;
 private JTextField[][] inputTable; // matrix of fields to generate a table
 private JTextField spreadOutField = null;
 private JTextField spreadInField = null;
 private JTextField marketpInField = null;
 private JTextField bulletField = null;
 private JTextField bondField = null;
 private JTextField optionSimpleField = null;

 //- Radio button
 private JRadioButton[] callPutButton = null;
 private JRadioButton[] spreadButton = null;

 //- Combo Boxes
 private JComboBox numStepsBox = null;
 private JComboBox numExpBox = null;

 //- Table scroll
 private JScrollPane inputTableScroll = new JScrollPane();

 //- Buttons
 private JButton calculateButton = null;
 private JButton showRateButton = null;
 private JButton showDiscountButton = null;
 private JButton showCouponButton = null;
 private JButton showOptionButton = null;
 private JButton resetButton = null;

 //- Input Default
 private double defSpreadValue = 0; // start with no spread
 private double defMarketpInValue = 85; // start market price value
 private double defStepValue = 12; // one year in months
 private double defStrikeValue = 90; // money units
 private double defVolatilityValue = 0.0; // in procent
 private double defRateValue = 5.0;
 private double defCouponRateValue = 0.0; // in procent

 //- Input Variables
 private double stepValue;
 private double[] strikeValue;
 private double volatilityValue;
 private double couponRateValue;
 private double spreadValue;
 private double marketpInValue;

 //- Calculation Variables
 private int maxSteps; // max number of steps to limit table sizes
 private int numSteps; // number of steps for bond maturity
 private int numExp; // number of steps for option expiration
 private Integer[] numStepsArray; // array for combobox
 private Integer[] numExpArray; // array for combobox
 private double dt; // step time
 private double sdt; // sqrt of step time

- 51 -

 private int N; // number of steps
 private double[] sig; // calculated volatility
 private double[] R; // Z_C bond rates
 private double[] V; // Z_C bond volatilities
 private double[] P; // price of pure discont bond
 private double[] Pu; // Price of upper P
 private double[] Pd; //Price of lower P
 private double[][] Qu; // upper Q-tree
 private double[][] Qd; //lower Q-tree
 private double[] U; // internal variable
 private double[][] r; // output rate
 private double[][] d; // one period discount factor
 private double[][] rs; // output rate with added spread
 private double[][] ds; // one period discount factor with added spread
 private double[][] s; // bondPrice price
 private double[][] v; // output value of call or put
 private double sumtempDer; // internal variable
 private double sumtemp; // internal variable
 private double epsilon; // allowed error for newton raphson iteration
 private double whileCounter; // counter in while calculations
 private double[] expfunc; // used for a common calculation
 private double tempFunc; // temp func value in while calc
 private double tempFunc2; // temp func value in while calc
 private double tempFuncDer; // temp func value in while calc
 private double tempFunc2Der; // temp func value in while calc
 private double tempFuncDer2; // temp func value in while calc
 private double tempFunc2Der2; // temp func value in while calc
 private double jacob; // jacobian for the 2D newton

 //- Methods
 public void init() {
 //--
 //- Add panels
 //- Add content pain
 contentPane = getContentPane();
 contentPane.setSize(1000,1000);
 contentPane.setLayout(new BorderLayout());

 //- create header panel
 headerPanel = new JPanel();
 headerPanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK, 1));
 contentPane.add(headerPanel, BorderLayout.NORTH);

 //- Add data panel
 dataPanel = new JPanel(new BorderLayout());
 dataPanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK, 1));
 contentPane.add(dataPanel,BorderLayout.CENTER);

 //- Add input panel
 inputPanel = new JPanel(new BorderLayout());
 inputPanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK, 1));
 dataPanel.add(inputPanel,BorderLayout.CENTER);

 //- Add fixeddata panel
 fixeddataPanel = new JPanel(new GridLayout(7,2));
 inputPanel.add(fixeddataPanel,BorderLayout.NORTH);

 //- Add dynamicdata
 dynamicdataPanel = new JPanel();
 inputPanel.add(dynamicdataPanel,BorderLayout.CENTER);

- 52 -

 //- Add command and control panels
 controlPanel = new JPanel(new BorderLayout());
 controlPanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK, 1));
 dataPanel.add(controlPanel,BorderLayout.EAST);

 //- Add command panel
 commandPanel = new JPanel();
 commandPanel.setLayout(new BoxLayout(
 commandPanel, BoxLayout.Y_AXIS));
 controlPanel.add(commandPanel,BorderLayout.NORTH);

 //- create result panel, maybe use later...
 resultPanel = new JPanel(new GridLayout(6,2));
 resultPanel.setBorder(BorderFactory.createLineBorder(
 Color.black, 1));
 dataPanel.add(resultPanel, BorderLayout.NORTH);

 //---
 //- result panel: Add spread output label and field
 spreadOutLabel = new JLabel(SPREADOUT);
 resultPanel.add(spreadOutLabel);
 spreadOutField = new JTextField();
 spreadOutField.setEditable(false);
 spreadOutField.setToolTipText(SPREADOUT_TIP);
 resultPanel.add(spreadOutField);

 //- result panel: Add Coupon price label and field
 couponPriceLabel = new JLabel(COUPONPRICE);
 resultPanel.add(couponPriceLabel);
 couponPriceField = new JTextField();
 couponPriceField.setEditable(false);
 couponPriceField.setToolTipText(MARKETPOUT_TIP);
 resultPanel.add(couponPriceField);

 //- result panel: Add Bullet price label and field
 bondLabel = new JLabel(BONDPRICE);
 resultPanel.add(bondLabel);
 bondField = new JTextField();
 bondField.setEditable(false);
 //bondField.setToolTipText(BONDPRICE_TIP);
 resultPanel.add(bondField);

 //- result panel: Add Bullet price label and field
 bulletLabel = new JLabel(BULLETPRICE);
 resultPanel.add(bulletLabel);
 bulletField = new JTextField();
 bulletField.setEditable(false);
 //bulletField.setToolTipText(BULLETPRICE_TIP);
 resultPanel.add(bulletField);

 //- result panel: Add option price label and field
 optionPriceLabel = new JLabel(OPTIONPRICE);
 resultPanel.add(optionPriceLabel);
 optionPriceField = new JTextField();
 optionPriceField.setEditable(false);
 optionPriceField.setToolTipText(OPTIONPRICE_TIP);
 resultPanel.add(optionPriceField);

 //- result panel: Add spread simple output label and field
 optionSimpleLabel = new JLabel(OPTIONPRICESIMPLE);
 resultPanel.add(optionSimpleLabel);
 optionSimpleField = new JTextField();
 optionSimpleField.setEditable(false);
 //optionSimpleField.setToolTipText(OPTIONPRICESIMPLE_TIP);

- 53 -

 resultPanel.add(optionSimpleField);

 //---
 //- fixeddata panel: Add spread input label and field
 spreadInLabel = new JLabel(SPREADIN);
 fixeddataPanel.add(spreadInLabel);
 spreadInField = new JTextField();
 spreadInField.setText(Double.toString(defSpreadValue));
 spreadInField.setToolTipText(SPREADIN_TIP);
 fixeddataPanel.add(spreadInField);

 //- fixeddata panel: Add market price input label and field
 marketpInLabel = new JLabel(MARKETPIN);
 fixeddataPanel.add(marketpInLabel);
 marketpInField = new JTextField();
 marketpInField.setEditable(false);
 marketpInField.setToolTipText(MARKETPOUT_TIP);
 fixeddataPanel.add(marketpInField);

 //- fixeddata panel: Add step label and field
 stepLabel = new JLabel(STEP);
 fixeddataPanel.add(stepLabel);
 stepField = new JTextField();
 stepField.setText(Double.toString(defStepValue));
 stepField.setToolTipText(STEP_TIP);
 fixeddataPanel.add(stepField);

 //- fixeddata panel: Add coupon rate label and field
 couponRateLabel = new JLabel(COUPONRATE);
 fixeddataPanel.add(couponRateLabel);
 couponRateField = new JTextField();
 couponRateField.setText(Double.toString(defCouponRateValue));
 couponRateField.setToolTipText(COUPONRATE_TIP);
 fixeddataPanel.add(couponRateField);

 //- fixeddata panel: Add numExp comboBox label and box
 numExpLabel = new JLabel(NUM_EXP);
 fixeddataPanel.add(numExpLabel);
 maxSteps = 1000;
 Integer[] numExpArray = new Integer[maxSteps];
 for (int i = 0; i<numExpArray.length; i++){
 numExpArray[i] = new Integer(i);
 };
 numExpBox = new JComboBox(numExpArray);
 numExpBox.setToolTipText(NUMEXP_TIP);
 numExpBox.setSelectedIndex(0);
 numExp = 0; //Allways starts with row zero.
 fixeddataPanel.add(numExpBox);

 //- fixeddata panel: Add numSteps comboBox label and box
 numStepsLabel = new JLabel(NUM_STEPS);
 fixeddataPanel.add(numStepsLabel);
 Integer[] numStepsArray = new Integer[maxSteps];
 for (int i = 0; i<numStepsArray.length; i++){
 numStepsArray[i] = new Integer(i+1);
 };
 numStepsBox = new JComboBox(numStepsArray);
 numStepsBox.setToolTipText(NUMSTEPS_TIP);
 numStepsBox.setSelectedIndex(0);
 numSteps = 1; //Allways starts with row one.
 fixeddataPanel.add(numStepsBox);

 //---
 //- dynamicdata panel: Add input table
 tablePanel = new JPanel(new GridLayout(1,4));

- 54 -

 tablePanel0 = new JPanel(new GridLayout(maxSteps+1,1));
 tablePanel1 = new JPanel(new GridLayout(maxSteps+1,1));
 tablePanel2 = new JPanel(new GridLayout(maxSteps+1,1));
 tablePanel3 = new JPanel(new GridLayout(maxSteps+1,1));
 tablePanel.add(tablePanel0);
 tablePanel.add(tablePanel1);
 tablePanel.add(tablePanel2);
 tablePanel.add(tablePanel3);
 inputTableScroll = new JScrollPane(tablePanel);
 inputTableScroll.setPreferredSize(new Dimension(450,220));
 dynamicdataPanel.add(inputTableScroll);

 //- dynamicdata panel: add headers to table
 inputTable = new JTextField[maxSteps+1][4];
 inputTable[0][0] = new JTextField();
 inputTable[0][1] = new JTextField();
 inputTable[0][2] = new JTextField();
 inputTable[0][3] = new JTextField();
 tablePanel0.add(inputTable[0][0]);
 tablePanel1.add(inputTable[0][1]);
 tablePanel2.add(inputTable[0][2]);
 tablePanel3.add(inputTable[0][3]);
 inputTable[0][0].setText(STEPS_TO_MAT);
 inputTable[0][1].setText(Z_C_RATE);
 inputTable[0][1].setToolTipText(Z_C_RATE_TIP);
 inputTable[0][2].setText(Z_C_VOLATILITY);
 inputTable[0][2].setToolTipText(Z_C_VOLATILITY_TIP);
 inputTable[0][3].setText(STRIKE);
 inputTable[0][3].setToolTipText(STRIKE_TIP);
 inputTable[0][0].setEditable(false);
 inputTable[0][1].setEditable(false);
 inputTable[0][2].setEditable(false);
 inputTable[0][3].setEditable(false);

 //- dynamicdata panel: add first row to table
 inputTable[1][0] = new JTextField();
 inputTable[1][1] = new JTextField();
 inputTable[1][2] = new JTextField();
 inputTable[1][3] = new JTextField();
 tablePanel0.add(inputTable[1][0]);
 tablePanel1.add(inputTable[1][1]);
 tablePanel2.add(inputTable[1][2]);
 tablePanel3.add(inputTable[1][3]);
 inputTable[1][0].setText("1");
 inputTable[1][0].setEditable(false);
 inputTable[1][1].setText(Double.toString(defRateValue));
 inputTable[1][1].setToolTipText(Z_C_RATE_TIP);
 inputTable[1][2].setText(Double.toString(defVolatilityValue));
 inputTable[1][2].setToolTipText(Z_C_VOLATILITY_TIP);
 inputTable[1][3].setEditable(false);

 //- dynamicdata panel: add all other rows to table
 for (int i=2; i<=maxSteps; i++){
 inputTable[i][0] = new JTextField();
 inputTable[i][1] = new JTextField();
 inputTable[i][2] = new JTextField();
 inputTable[i][3] = new JTextField();
 tablePanel0.add(inputTable[i][0]);
 tablePanel1.add(inputTable[i][1]);
 tablePanel2.add(inputTable[i][2]);
 tablePanel3.add(inputTable[i][3]);
 inputTable[i][0].setEditable(false);
 inputTable[i][1].setEditable(false);
 inputTable[i][2].setEditable(false);
 inputTable[i][3].setEditable(false);

- 55 -

 };

 //--
 //- command panel: Add callPut panel and Radio buttons
 spreadPanel = new JPanel(new GridLayout(2,1));
 spreadPanel.setBorder(BorderFactory.createLineBorder(
 Color.black, 1));
 commandPanel.add(spreadPanel);

 spreadButton = new JRadioButton[2];
 spreadButton[0] = new JRadioButton(CALC_MARKETP);
 spreadButton[1] = new JRadioButton(CALC_SPREAD);
 ButtonGroup spreadGroup = new ButtonGroup();
 spreadGroup.add(spreadButton[0]);
 spreadGroup.add(spreadButton[1]);
 spreadPanel.add(spreadButton[0]);
 spreadPanel.add(spreadButton[1]);
 spreadButton[0].setSelected(true);

 //- command panel: Add callPut panel and Radio buttons
 callPutPanel = new JPanel(new GridLayout(5,1));
 callPutPanel.setBorder(BorderFactory.createLineBorder(
 Color.black, 1));
 commandPanel.add(callPutPanel);

 callPutButton = new JRadioButton[5];
 callPutButton[0] = new JRadioButton(NO_OPTION);
 callPutButton[1] = new JRadioButton(CALL);
 callPutButton[2] = new JRadioButton(PUT);
 callPutButton[3] = new JRadioButton(ACALL);
 callPutButton[4] = new JRadioButton(APUT);
 ButtonGroup callPutGroup = new ButtonGroup();
 callPutGroup.add(callPutButton[0]);
 callPutGroup.add(callPutButton[1]);
 callPutGroup.add(callPutButton[2]);
 callPutGroup.add(callPutButton[3]);
 callPutGroup.add(callPutButton[4]);
 callPutPanel.add(callPutButton[0]);
 callPutPanel.add(callPutButton[1]);
 callPutPanel.add(callPutButton[2]);
 callPutPanel.add(callPutButton[3]);
 callPutPanel.add(callPutButton[4]);
 callPutButton[0].setSelected(true);

 //- command panel: Add show tree panel panel and buttons
 showTreePanel = new JPanel(new GridLayout(4,1));
 commandPanel.add(showTreePanel);
 showRateButton = new JButton(SHOWRATE);
 showTreePanel.add(showRateButton);
 showDiscountButton = new JButton(SHOWDISCOUNT);
 showTreePanel.add(showDiscountButton);
 showCouponButton = new JButton(SHOWCOUPON);
 showTreePanel.add(showCouponButton);
 showOptionButton = new JButton(SHOWOPTION);
 showTreePanel.add(showOptionButton);

 //- command panel: Add calculate panel and button
 calculatePanel = new JPanel();
 commandPanel.add(calculatePanel);
 calculateButton = new JButton(CALCULATE);
 calculatePanel.add(calculateButton);

 //- command panel: Add default panel and button
 resetPanel = new JPanel();
 commandPanel.add(resetPanel);

- 56 -

 resetButton = new JButton(RESET);
 resetPanel.add(resetButton);

 //--
 //- header panel: Add header
 headerLabel = new JLabel(HEADER);
 headerPanel.add(headerLabel);

 //--
 //- Adding action listeners
 numStepsBox.addActionListener(this);
 numExpBox.addActionListener(this);
 spreadButton[0].addActionListener(this);
 spreadButton[1].addActionListener(this);
 callPutButton[0].addActionListener(this);
 callPutButton[1].addActionListener(this);
 callPutButton[2].addActionListener(this);
 callPutButton[3].addActionListener(this);
 callPutButton[4].addActionListener(this);
 showRateButton.addActionListener(this);
 showDiscountButton.addActionListener(this);
 showCouponButton.addActionListener(this);
 showOptionButton.addActionListener(this);
 resetButton.addActionListener(this);
 calculateButton.addActionListener(this);
 }

//--
 //- method to handle actions
 public void actionPerformed(ActionEvent e){
 Object source = e.getSource();
 //--
 // if number of steps to maturitybox
 if(source == numStepsBox){
 //- remove not needed rows
 for (int i=numSteps; i>numStepsBox.getSelectedIndex()+1; i--){
 inputTable[i][0].setText(" ");
 inputTable[i][1].setText(" ");
 inputTable[i][1].setEditable(false);
 inputTable[i][2].setText(" ");
 inputTable[i][2].setEditable(false);
 };
 //- add nedeed rows
 for (int i=numSteps+1; i<=numStepsBox.getSelectedIndex()+1; i++){
 inputTable[i][0].setText(Integer.toString(i));
 inputTable[i][1].setText(Double.toString(defRateValue));
 inputTable[i][1].setEditable(true);
 inputTable[i][2].setText(Double.toString(defVolatilityValue));
 inputTable[i][2].setEditable(true);
 };
 numSteps = numStepsBox.getSelectedIndex()+1;
 //- ERROR message if maturity <= expiration
 if (numExp>=numSteps) {
 JOptionPane.showMessageDialog(null,
 EXP_MAT_ERROR,
 NUM_EXP,
 JOptionPane.ERROR_MESSAGE);
 numExpBox.setSelectedIndex(numSteps-1); //lower expiration to ok level
 numExp=numSteps-1;
 };
 };
 //--
 //- if number of steps to expiration
 if(source == numExpBox){
 numExp = numExpBox.getSelectedIndex();

- 57 -

 // ERROR message if maturity <= expiration
 if(numExp>=numSteps){
 JOptionPane.showMessageDialog(null,
 EXP_MAT_ERROR,
 NUM_EXP,
 JOptionPane.ERROR_MESSAGE);
 numExpBox.setSelectedIndex(numSteps-1); //lower expiration to ok level
 numExp=numSteps-1;
 };
 strikeDisp(numExp);
 };
 //--
 //- if reset button: reset input fields
 if (source == resetButton) {
 spreadButton[0].setSelected(true);
 spreadInField.setEditable(true);
 spreadInField.setText(Double.toString(defSpreadValue));
 marketpInField.setEditable(false);
 marketpInField.setText(EMPTY);
 callPutButton[0].setSelected(true);
 numExpBox.setSelectedIndex(0); // reset steps to expiration
 numExp = 0;
 stepField.setText(Double.toString(defStepValue));
 return;
 };

 //--
 //- if show rate button: show the tree
 if (source == showRateButton) {
 Frame rateTreeFrame = new tableFrame(RATE_TREE,rs,numSteps);
 rateTreeFrame.show();
 };
 //- if show discount button: show the tree
 if (source == showDiscountButton) {
 Frame discountTreeFrame = new tableFrame(DISCOUNT_TREE,ds,numSteps);
 discountTreeFrame.show();
 };
 //- if discount rate button: show the tree
 if (source == showCouponButton) {
 Frame couponTreeFrame = new tableFrame(BOND_PRICE_TREE,s,numSteps+1);
 couponTreeFrame.show();
 };
 //- if option rate button: show the tree
 if (source == showOptionButton){
 if (callPutButton[0].isSelected() == true){ // no option selected
 numExpBox.setSelectedIndex(0); // reset steps to expiration
 numExp = 0;
 }
 else{ // an option has been chosen
 Frame optionTreeFrame = new tableFrame(OPT_PRICE_TREE,v,numExp+1);
 optionTreeFrame.show();
 }
 }
 //--
 // ask for strike price if an option is chosen
 if (source == callPutButton[0]) {
 numExpBox.setSelectedIndex(0); // reset steps to expiration
 numExp = 0;
 strikeDisp(numExp);
 };
 if ((source == callPutButton[1])|
 (source == callPutButton[2])|
 (source == callPutButton[3])|
 (source == callPutButton[4])){

- 58 -

 strikeDisp(numExp);
 };

 //--
 // ask for right input depending on if market price or spread is wanted
 if (source == spreadButton[0]) {
 spreadInField.setEditable(true);
 spreadInField.setText(Double.toString(defSpreadValue));
 marketpInField.setEditable(false);
 marketpInField.setText(EMPTY);
 };
 if (source == spreadButton[1]) {
 spreadInField.setEditable(false);
 spreadInField.setText(EMPTY);
 marketpInField.setEditable(true);
 marketpInField.setText(Double.toString(defMarketpInValue));
 };

 //--
 //- if calculate button
 if (source == calculateButton) {
 //- initiate variables
 N = numSteps;
 sig = new double[N+1];
 R = new double[N+1];
 V = new double[N+1];
 P = new double[N+1];
 Pu = new double[N+1];
 Pd = new double[N+1];
 Qu = new double[2*N][N+1];
 Qd = new double[2*N][N+1];
 U = new double[N+1];
 r = new double[2*N][N+1];
 d = new double[2*N][N+1];
 rs = new double[2*N][N+1];
 ds = new double[2*N][N+1];
 s = new double[2*N+2][N+1];
 v = new double[2*numExp+3][N+1];
 strikeValue = new double[N+1];
 epsilon = 0.0000001; // accepted error at N-R calculations.
 expfunc = new double[2*N];

 //- check input fields
 //- get strike input
 if (numExp!=0){
 if ((callPutButton[1].isSelected() == true)|
 (callPutButton[2].isSelected() == true)) {
 strikeValue[numExp] = inputNumber(inputTable[numExp][3],
 defStrikeValue,
 (STRIKE + " at: " + numExp));
 };
 if ((callPutButton[3].isSelected() == true)|
 (callPutButton[4].isSelected() == true)) {
 for (int i=1; i<=numExp; i++){
 strikeValue[i] = inputNumber(inputTable[i][3],
 defStrikeValue,
 (STRIKE + " at: " + i));
 };
 };
 };
 //- get step size input
 stepValue = inputNumber(stepField,
 defStepValue,
 STEP);
 //- get coupon rate input

- 59 -

 couponRateValue = inputNumber(couponRateField,
 defCouponRateValue,
 COUPONRATE);
 //- get spread input
 if (spreadButton[0].isSelected() == true) {
 spreadValue = 0.0001*inputNumber(spreadInField,
 defSpreadValue,
 SPREADIN);
 };
 if (spreadButton[1].isSelected() == true) {
 marketpInValue = inputNumber(marketpInField,
 defMarketpInValue,
 MARKETPIN);
 };
 //- get rate input
 for (int i=1; i<=numSteps; i++){
 R[i] = 0.01*inputNumber(inputTable[i][1],
 defRateValue,
 Z_C_RATE);
 };
 //- get volatility input
 for (int i=1; i<=numSteps; i++){
 V[i] = 0.01*inputNumber(inputTable[i][2],
 defVolatilityValue,
 Z_C_VOLATILITY);
 };

 //- initiate constants
 dt = stepValue/12;
 sdt = Math.sqrt(dt);

 //- CALCULATE WITH VARIABLE VOLATILITY
 r[N][0] = R[1];
 d[N][0] = 1/Math.pow(1+r[N][0],dt);

 //- calculate price of pure discount bonds
 for (int i=1; i<=N; i++) {
 P[i]=1/(Math.pow(1+R[i],(i*dt)));
 };
 for (int i=0; i<=N; i++) {
 U[i] = R[i];
 sig[i] = V[i];
 };

 //- Calculate Pu and Pd
 for (int i=2; i<=N; i++) {
 //- calculate Pu with newton-raphson
 Pu[i] = 1;
 whileCounter = 0;
 expfunc[i] = Math.exp(-2*V[i]*sdt); // used often
 //- calculate initial value.
 tempFunc=Pu[i]+Math.pow(1 - expfunc[i] + expfunc[i]*Math.pow(Pu[i],
 -1/((i-1)*dt)),
 -(i-1)*dt)
 - 2*P[i]*Math.pow(1+r[N][0],dt);

 while (Math.abs(tempFunc) > epsilon){
 whileCounter = whileCounter +1;
 tempFuncDer=1 + Math.pow(1 - expfunc[i] + expfunc[i]*Math.pow(Pu[i],
 -1/((i-1)*dt)),
 -(i-1)*dt-1)*
 expfunc[i]*Math.pow(Pu[i],-1/((i-1)*dt)-1);
 Pu[i] = Pu[i] - tempFunc/tempFuncDer;
 //- update.
 tempFunc=Pu[i]+Math.pow(1 - expfunc[i] + expfunc[i]*Math.pow(Pu[i],

- 60 -

 -1/((i-1)*dt)),
 -(i-1)*dt)
 - 2*P[i]*Math.pow(1+r[N][0],dt);
 };
 Pd[i]= Math.pow(1 - expfunc[i] + expfunc[i]*Math.pow(Pu[i],
 -1/((i-1)*dt)), -(i-1)*dt);
 };

 //- Calculate and build trees
 for (int i=1; i<N; i++) {
 //- build Qu and Qd trees
 if (i == 1) {
 Qu[N+1][1] = 1;
 Qd[N-1][1] = 1;
 }
 else {// for outer rows
 Qu[N+i][i] = 0.5*Qu[N+i-1][i-1]*d[N+i-1][i-1]; //top row, Qu
 Qu[N+2-i][i] = 0.5*Qu[N+2-i+1][i-1]*d[N+2-i+1][i-1]; //low row, Qu
 Qd[N-2+i][i] = 0.5*Qd[N-2+i-1][i-1]*d[N-2+i-1][i-1]; //top row, Qd
 Qd[N-i][i] = 0.5*Qd[N-i+1][i-1]*d[N-i+1][i-1]; //low row, Qd

 for (int j=N+2-i+2; j<=N+i-2; j=j+2){ // for inner rows of Qu
 Qu[j][i] = 0.5*Qu[j-1][i-1]*d[j-1][i-1] +
 0.5*Qu[j+1][i-1]*d[j+1][i-1];
 };
 for (int j=N-i+2; j<=N-2+i-2; j=j+2){ // for inner rows of Qd
 Qd[j][i] = 0.5*Qd[j-1][i-1]*d[j-1][i-1] +
 0.5*Qd[j+1][i-1]*d[j+1][i-1];
 };
 }

 //- Calculate U and sig using Newton-Raphson
 //- calculate initial values
 for (int j=N-i; j<=N+i; j=j+2) {
 expfunc[j]=Math.exp(sig[i]*(j-N)*sdt); // equation used twice below.
 };

 sumtemp = 0 ;
 for (int j=N-i+2; j<=N+i; j=j+2) {
 sumtemp=sumtemp + Qu[j][i]/Math.pow(1+U[i]*expfunc[j],dt);
 };
 tempFunc=sumtemp-Pu[i+1];

 sumtemp = 0 ;
 for (int j=N-i; j<=N+i-2; j=j+2) {
 sumtemp=sumtemp + Qd[j][i]/Math.pow(1+U[i]*expfunc[j],dt);
 };
 tempFunc2=sumtemp-Pd[i+1];

 whileCounter = 0;
 while ((Math.abs(tempFunc) > epsilon) | (Math.abs(tempFunc2) > epsilon)){
 whileCounter = whileCounter +1;

 //- calculate derivatives
 sumtempDer = 0;
 for (int j=N-i+2; j<=N+i; j=j+2) {
 sumtempDer=sumtempDer - Qu[j][i]*expfunc[j]*dt/
 Math.pow((1+U[i]*expfunc[j]),dt+1);
 };
 tempFuncDer=sumtempDer;

 sumtempDer = 0;
 for (int j=N-i+2; j<=N+i; j=j+2) {
 sumtempDer=sumtempDer - Qu[j][i]*U[i]*dt*(j-N)*sdt*expfunc[j]/
 Math.pow((1+U[i]*expfunc[j]),dt+1);

- 61 -

 };
 tempFuncDer2=sumtempDer;

 sumtempDer = 0;
 for (int j=N-i; j<=N+i-2; j=j+2) {
 sumtempDer=sumtempDer - Qd[j][i]*expfunc[j]*dt/
 Math.pow((1+U[i]*expfunc[j]),dt+1);
 };
 tempFunc2Der=sumtempDer;

 sumtempDer = 0;
 for (int j=N-i; j<=N+i-2; j=j+2) {
 sumtempDer=sumtempDer - Qd[j][i]*U[i]*dt*(j-N)*sdt*expfunc[j]/
 Math.pow((1+U[i]*expfunc[j]),dt+1);
 };
 tempFunc2Der2=sumtempDer;

 //- calculate new values for U and sig
 jacob= (tempFuncDer*tempFunc2Der2) - (tempFunc2Der*tempFuncDer2);
 U[i] = U[i] - ((tempFunc*tempFunc2Der2 - tempFunc2*tempFuncDer2)/
 jacob);
 sig[i] = sig[i] - ((tempFunc2*tempFuncDer - tempFunc*tempFunc2Der)/
 jacob);

 //- update functions
 for (int j=N-i; j<=N+i; j=j+2) {
 expfunc[j]=Math.exp(sig[i]*(j-N)*sdt); //equation used often
 };

 sumtemp = 0 ;
 for (int j=N-i+2; j<=N+i; j=j+2) {
 sumtemp=sumtemp + Qu[j][i]/Math.pow(1+U[i]*expfunc[j],dt);
 };
 tempFunc=sumtemp-Pu[i+1];

 sumtemp = 0 ;
 for (int j=N-i; j<=N+i-2; j=j+2) {
 sumtemp=sumtemp + Qd[j][i]/Math.pow(1+U[i]*expfunc[j],dt);
 };
 tempFunc2=sumtemp-Pd[i+1];
 };

 //- calculate rates -----------------
 for (int j=N-i; j<=N+i; j=j+2) {
 r[j][i] = U[i]*Math.exp(sig[i]*(j-N)*sdt);
 d[j][i] = 1/Math.pow(1+r[j][i],dt);
 };
 }; // end Calculate and build trees

 //- display results not using spread
 treeCalc(0);
 bulletField.setText(Double.toString(roundDec(s[numSteps+1][0],4)));
 optionSimpleField.setText(Double.toString(roundDec(v[numExp+1][0],4)));
 if (callPutButton[0].isSelected() == true) {
 bondField.setText(Double.toString(roundDec(s[numSteps+1][0],4)));
 optionSimpleField.setText(EMPTY);
 };
 if ((callPutButton[1].isSelected() == true)|
 (callPutButton[3].isSelected() == true)) {
 bondField.setText(Double.toString(roundDec(s[numSteps+1][0] -
 v[numExp+1][0],4)));
 optionSimpleField.setText(Double.toString(roundDec(v[numExp+1][0],4)));
 };
 if ((callPutButton[2].isSelected() == true)|
 (callPutButton[4].isSelected() == true)) {

- 62 -

 bondField.setText(Double.toString(roundDec(s[numSteps+1][0] +
 v[numExp+1][0],4)));
 optionSimpleField.setText(Double.toString(roundDec(v[numExp+1][0],4)));
 };

 //- display results using spread
 //- calculate market price from given spread
 if (spreadButton[0].isSelected() == true) {
 treeCalc(spreadValue);
 };
 //- calculate spread from given market price
 if (spreadButton[1].isSelected() == true) {
 spreadValue = 0.01; // initial guess
 treeCalc(spreadValue);
 if (callPutButton[0].isSelected() == true){
 tempFunc = s[numSteps+1][0] - marketpInValue;
 while (Math.abs(tempFunc) > epsilon){
 treeCalc(spreadValue + 0.0001);
 tempFuncDer = s[numSteps+1][0] - marketpInValue;
 spreadValue = spreadValue - tempFunc*0.0001/(tempFuncDer -
 tempFunc);

 //- update.
 treeCalc(spreadValue);
 tempFunc = s[numSteps+1][0] - marketpInValue;
 };
 };
 if ((callPutButton[1].isSelected() == true)|
 (callPutButton[3].isSelected() == true)) {
 tempFunc = s[numSteps+1][0]-v[numExp+1][0]- marketpInValue;
 while (Math.abs(tempFunc) > epsilon){
 treeCalc(spreadValue + 0.0001);
 tempFuncDer = s[numSteps+1][0]-v[numExp+1][0] - marketpInValue;
 spreadValue = spreadValue - tempFunc*0.0001/(tempFuncDer -
 tempFunc);

 //- update.
 treeCalc(spreadValue);
 tempFunc = s[numSteps+1][0] - v[numExp+1][0] - marketpInValue;
 };
 };
 if ((callPutButton[2].isSelected() == true)|
 (callPutButton[4].isSelected() == true)) {
 tempFunc = s[numSteps+1][0]+v[numExp+1][0] - marketpInValue;
 while (Math.abs(tempFunc) > epsilon){
 treeCalc(spreadValue+0.0001);
 tempFuncDer = s[numSteps+1][0]+v[numExp+1][0] - marketpInValue ;
 spreadValue = spreadValue - tempFunc*0.0001/(tempFuncDer -
 tempFunc);

 //- update.
 treeCalc(spreadValue);
 tempFunc = s[numSteps+1][0]+v[numExp+1][0] - marketpInValue;
 };
 };
 }

 //- Display results
 spreadOutField.setText(Double.toString(roundDec(spreadValue*10000,4)));
 if(callPutButton[0].isSelected() == true) {
 couponPriceField.setText(Double.toString(roundDec(s[numSteps+1][0],4)));
 optionPriceField.setText(EMPTY);
 };
 if((callPutButton[1].isSelected() == true)|
 (callPutButton[3].isSelected() == true)) {

- 63 -

 couponPriceField.setText(Double.toString(roundDec(s[numSteps+1][0] -
 v[numExp+1][0],4)));
 optionPriceField.setText(Double.toString(roundDec(v[numExp+1][0],4)));
 };
 if((callPutButton[2].isSelected() == true)|
 (callPutButton[4].isSelected() == true)) {
 couponPriceField.setText(Double.toString(roundDec(s[numSteps+1][0] +
 v[numExp+1][0],4)));
 optionPriceField.setText(Double.toString(roundDec(v[numExp+1][0],4)));
 };
 }; // end calculate
 };// end method for action handling

//---
//- method for asking right strikeprices.
 private void strikeDisp(int numExp){
 if (callPutButton[0].isSelected() == true){ // no option is needed
 numExpBox.setSelectedIndex(0); // reset steps to expiration
 numExp = 0;
 for (int i=1; i<maxSteps; i++){
 inputTable[i][3].setEditable(false);
 inputTable[i][3].setText(EMPTY);
 };
 }
 if ((callPutButton[1].isSelected() == true)|
 (callPutButton[2].isSelected() == true)){
 for (int i=1; i<numExp; i++){
 inputTable[i][3].setEditable(false);
 inputTable[i][3].setText(EMPTY);
 };
 if (numExp!=0){
 inputTable[numExp][3].setEditable(true);
 };
 for (int i=numExp+1; i<=maxSteps; i++){
 inputTable[i][3].setEditable(false);
 inputTable[i][3].setText(EMPTY);
 };
 }
 if ((callPutButton[3].isSelected() == true)|
 (callPutButton[4].isSelected() == true)){
 for (int i=1; i<=numExp; i++){
 inputTable[i][3].setEditable(true);
 };
 for (int i=numExp+1; i<=maxSteps; i++){
 inputTable[i][3].setEditable(false);
 inputTable[i][3].setText(EMPTY);
 };
 };
 };

//---
 //- Method for calculating the bond price and option price
 private void treeCalc (double spread){
 for (int i=0; i<N; i++) {
 for (int j=N-i; j<=N+i; j=j+2) {
 rs[j][i] = r[j][i]+spread;
 ds[j][i] = 1/Math.pow(1+rs[j][i],dt);
 };
 };

 //- calculate bond price ---------------
 for (int j = 1; j<=2*numSteps+1; j=j+2){
 s[j][numSteps] = 100 + couponRateValue*dt;
 };
 for (int i=numSteps-1; i>0; i--){

- 64 -

 for (int j=numSteps-i+1; j<=numSteps+i+1; j=j+2) {
 s[j][i] = 0.5*(s[j-1][i+1]+s[j+1][i+1])*ds[j-1][i] +
 couponRateValue*dt;
 };
 };
 s[numSteps+1][0] = 0.5*(s[numSteps][1]+s[numSteps+2][1])*ds[numSteps][0];

 //- calculate european call --------
 if(callPutButton[1].isSelected() == true) {
 for (int j=1; j<=numExp*2+1; j=j+2) {
 v[j][numExp] = Math.max(0, s[j-numExp+numSteps][numExp] -
 strikeValue[numExp]);
 };
 for (int i=numExp-1; i>0; i--){
 for (int j=numExp-i+1; j<=numExp+i+1; j=j+2) {
 v[j][i] = ds[j-numExp-1+numSteps][i]*0.5*(v[j-1][i+1]+v[j+1][i+1]);
 };
 };
 v[numExp+1][0] = ds[numSteps][0]*0.5*(v[numExp][1]+v[numExp+2][1]);
 }

 //- calculate european put
 if (callPutButton[2].isSelected() == true){
 for (int j=1; j<=numExp*2+1; j=j+2) {
 v[j][numExp] = Math.max(0, strikeValue[numExp] -
 s[j-numExp+numSteps][numExp]);
 };
 for (int i=numExp-1; i>0; i--){
 for (int j=numExp-i+1; j<=numExp+i+1; j=j+2) {
 v[j][i] = ds[j-numExp-1+numSteps][i]*0.5*(v[j-1][i+1]+v[j+1][i+1]);
 };
 };
 v[numExp+1][0] = ds[numSteps][0]*0.5*(v[numExp][1]+v[numExp+2][1]);
 }

 //- calculate american call --------
 if(callPutButton[3].isSelected() == true) {
 for (int j=1; j<=numExp*2+1; j=j+2) {
 v[j][numExp]=Math.max(0, s[j-numExp+numSteps][numExp] -
 strikeValue[numExp]);
 };
 for (int i=numExp-1; i>0; i--){
 for (int j=numExp-i+1; j<=numExp+i+1; j=j+2) {
 v[j][i]= Math.max(ds[j-numExp-1+numSteps][i]*0.5*
 (v[j-1][i+1]+v[j+1][i+1]),
 s[j-numExp+numSteps][i]-strikeValue[i]);
 };
 };
 v[numExp+1][0]=ds[numSteps][0]*0.5*(v[numExp][1]+v[numExp+2][1]);
 }

 //- calculate american put
 if (callPutButton[4].isSelected() == true){
 for (int j=1; j<=numExp*2+1; j=j+2) {
 v[j][numExp]=Math.max(0, strikeValue[numExp] -
 s[j-numExp+numSteps][numExp]);
 };
 for (int i=numExp-1; i>0; i--){
 for (int j=numExp-i+1; j<=numExp+i+1; j=j+2) {
 v[j][i]= Math.max(ds[j-numExp-1+numSteps][i]*0.5*
 (v[j-1][i+1]+v[j+1][i+1]),
 strikeValue[i]-s[j-numExp+numSteps][i]);
 };
 };
 v[numExp+1][0]=ds[numSteps][0]*0.5*(v[numExp][1]+v[numExp+2][1]);

- 65 -

 }
 };

//--
 //- method for testing inputs
 private double inputNumber(JTextField field,
 double oldValue,
 String title) {
 boolean isOK = true;
 double newValue = 1;
 try { // test input
 newValue = Double.parseDouble(field.getText());
 }
 catch (NumberFormatException e) { // ERROR message
 JOptionPane.showMessageDialog(null,
 NOT_A_NUMBER,
 title,
 JOptionPane.ERROR_MESSAGE);
 isOK = false;
 }
 if (newValue < 0) { // ERROR message
 JOptionPane.showMessageDialog(null,
 NON_POSITIVE,
 title,
 JOptionPane.ERROR_MESSAGE);
 isOK = false;
 }
 if (isOK) {
 return newValue; // everything was ok
 }
 else {
 field.setText(Double.toString(oldValue)); //something was wrong
 return oldValue;
 }
 }
//--
 //- method for displaying right number of decimals
 public double roundDec(double value, int dispDec) {
 double decFact = Math.pow(10,dispDec);
 value = Math.rint(value*decFact)/decFact;
 return value;
 }
} // end methods

//--
//- Class for displaying trees.
class tableFrame extends Frame {
 tableFrame (String title, double[][] tableValue, int columns){
 super(title);
 setLayout(new BorderLayout());
 JPanel TreePanel = null;
 JLabel TreeLabel = null;
 DefaultTableModel model = new DefaultTableModel(){
 public boolean isCellEditable(int row, int column){
 return false;
 };
 };
 JTable Table = new JTable(model);
 JScrollPane TableScroll = new JScrollPane(Table);
 TreePanel = new JPanel(new BorderLayout());
 TreePanel.setBorder(BorderFactory.createLineBorder(
 Color.BLACK, 1));
 add(TreePanel);

- 66 -

 //- Tree panel: Add table tree
 TreeLabel = new JLabel(title);
 TreePanel.add(TreeLabel, BorderLayout.NORTH);
 Table = new JTable(model);
 TreePanel.add(Table, BorderLayout.CENTER);
 TableScroll = new JScrollPane(Table);
 TreePanel.add(TableScroll, BorderLayout.CENTER);
 Table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF); // for horisontal scroll
 for (int i =0; i <columns; i++) {
 model.addColumn(Integer.toString(i));
 };
 model.addRow(new Object[1]);

 //- Add rows that are needed
 for (int i=1; i<columns; i++){
 model.addRow(new Object[1]);
 model.addRow(new Object[1]);
 };
 //- fill right cells with right values
 for (int i = 0; i<columns; i++){ //check all cells
 for (int j = columns-i; j<=columns+i; j=j+2){
 model.setValueAt(new Double(roundDec(tableValue[j][i],4)),j-1,i);
 };
 };
 resize(Math.min(650,20+columns*80),Math.min(450,90+columns*35));
 }
 public boolean handleEvent(Event evt) {
 if (evt.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 return true;
 }
 return super.handleEvent(evt);
 }
 //- method for displaying right number of decimals
 public double roundDec(double value, int dispDec) {
 double decFact = Math.pow(10,dispDec);
 value = Math.rint(value*decFact)/decFact;
 return value;
 }
}; // end tableFrame class

- 67 -

References

Jan Röman. Lecture Notes in Analytical Finance II. Mälardalen University. 2005

Haug, E., The Complete Guide to Option Pricing Formulas. McGraw-Hill

Hull J C. Option Futures and other Derivatives. Prentice-Hall, 5th ed, New Jersey

Clewlow and Strikland. Implementing Derivatives Models. Wiley

Mary C, Kathy W, Alison H. The Java Tutorial. A Short Course on the Basics. 3rd ed,
Addison-Wesley

Option Style. Available Online:
http://en.wikipedia.org/wiki/American_option

Spread. Available Online:
http://www.financial-spread-betting.com/

